5,946,696

11

object’s properties should remain unchanged. If the apply
OPL function has been invoked in standard mode, the apply
OPL function determines all of the object’s properties that
were not specified in the input OPL (step 910). Next, the
apply OPL function changes these unspecified properties to
their standard value (step 912). In this step, the apply OPL
function accesses the mapping of properties to their standard
values and sets the unspecified properties of the object to
their standard value.

Applications

Following is a description of four applications that take
advantage of the benefits of the OPL of the preferred
embodiment and which use the previously described func-
tions. The first application is the arithmetic application
which has been previously described with reference to
FIGS. 1A-1F. In the arithmetic application, a user has
modified an original object and the modifications are then
isolated and applied to another object. FIG. 10 depicts a
flowchart of the steps performed by the arithmetic applica-
tion. The first step performed by the arithmetic application
is to invoke the generate OPL function on the modified
object (step 1002). This step will return an OPL describing
the properties of the modified object. The generate OPL
function is then invoked on the original object (step 1004).
This step will return an OPL describing the properties of the
original object. Next, the subtract OPL function is invoked
with the OPLs returned from both step 1002 and 1004 being
passed as parameters (step 1006). In this step, the subtract
OPL function will isolate the modifications and will return
an OPL containing the modifications. After isolating these
modifications, the apply OPL function is invoked on a given
object with the OPL returned in step 1006 as a parameter
(step 1008). After the processing of this step, the object to
which the modifications have been applied will have its
properties modified accordingly.

FIG. 11 depicts a flowchart of the steps performed by a
format painting application. The format painting application
provides for the property settings (or format) of a particular
object (source object) to be extracted from the source object
and applied to another object (destination object). For
example, all of the property settings for object 100 in FIG.
1B can be obtained and applied to an object of a different
type, such as object 110 in FIG. 1C. This functionality will
have the effect of changing all of the properties in object 110
to the settings of the object 100 if the properties are common
among the two objects. In other words, if a property is
specified in the property list obtained from object 100 which
object 110 does not have, this property is ignored. The first
step performed by the format painting application is to
generate an OPL from the source object (step 1102). In this
step, an OPL is generated in Ninch mode so that a property
that the source object does not have is not reset on the
destination object. That is, if a standard mode OPL were
used for the source object and a value were unspecified
because the property was unknown, it would be set to its
standard value in the destination object even though this
action was unintended. Next, the format painting application
invokes the apply OPL function and applies the OPL
returned from step 1102 to the destination object (step 1104).
In this step, the Ninch mode OPL returned from step 1102
is applied to the destination object and the destination object
will henceforth adopt the property values of the source
object. Again, additional or different properties that the
destination object has that the source object does not are
unaffected by the format painting application.

FIG. 12 depicts a flowchart of the steps performed by a
synchronization application. The synchronization applica-

10

15

20

25

30

35

40

45

50

55

60

65

12

tion synchronizes the properties of one object (first object)
with the properties of another object (second object). As
such, when the properties of the first object are modified, the
synchronization application automatically makes the same
modifications to the corresponding properties (i.e., proper-
ties having the same property ids) of the second object. The
first step performed by the synchronization application is to
determine if a property of the first object has been modified
(step 1202). This step can be performed by polling the first
object at predetermined intervals. When polling the object,
the property list of the object is obtained using the generate
OPL function and the property list is compared to its most
recent OPL, the most recent OPL being retained after each
invocation of step 1202. If it is determined that a property
has been modified, the synchronization application isolates
the modification that was made to the first object by invok-
ing the subtract OPLs function and passing both the OPL of
the first object as modified and the most recent OPL of the
first object (step 1204). After isolating the modification, the
synchronization application applies the modification to the
second object (step 1206). The OPL is applied to the second
object by utilizing the apply OPL function, after which the
synchronization between the properties of the first object
with the properties of the second object is achieved.

FIG. 13 depicts a flow chart of the steps performed by a
combination application. The combination application pro-
vides the user with the ability to combine modifications that
were made to two objects (source objects). After combining
the modifications, the combined modifications can then be
applied to a destination object. This functionality allows a
user to pick and choose object formats that they like,
combine them, and apply these formats easily to a destina-
tion object. The first step performed by the combination
application is to isolate the first set of modifications (step
1302). In this step, the modifications made to the first source
object are isolated by subtracting the OPL of the source
object as modified from the OPL of the source object in its
original form. This step is performed by invoking the
subtract OPLs function. Next, the combination application
isolates the modifications made to the second source object
(step 1304). The processing of this step is similar to that as
described relative to step 1302. After isolating both the
modifications to the first source object and the modifications
to the second source object, the combination application
adds the modifications together (step 1306). This step is
performed by invoking the add OPLs function and desig-
nating one of the source objects as the overriding source
object. After adding the OPLs together, the combination
application applies the resulting OPL to the destination
object as specified by a user or program (step 1308). After
performing this step, the modifications made to the two
source objects have been easily isolated, combined and
applied to the destination object.

While the present invention has been described with
reference to a preferred embodiment thereof, those skilled in
the art will know of various changes in form that may be
made without departing from the spirit and scope of the
claimed invention as defined in the appended claims.

I claim:

1. A computer-readable medium whose contents cause a
computer system having a memory containing an object
with properties and a computer program for accessing the
properties of the object to perform processing, by perform-
ing the steps of:

storing a property list containing the properties in a

contiguous block of the memory by the object, wherein
at least one of the properties is a nested property list;
and



