US 8,196,195 B2

11

utility may also pre-define certain parameters and associated
parameter values based on information the transform utility
has regarding the target platform, such as an operating system
specific version. Characters used to identify the start and stop
of parameter reference strings may also be defined for a
specific implementation. For example, illustrative embodi-
ments in this example use the “${” characters to introduce the
parameter reference strings but these may be altered as
needed.

With reference to FIG. 8, a flowchart of a process using the
privilege manager of FIG. 3, in accordance with illustrative
embodiments is shown. Process 800 is an example of a pro-
cess using privilege manager 302 of FIG. 3.

Process 800 starts (step 802) and receives transformation
request (step 804). The transformation request includes a role
of the requester that initiates the transformation. Processing
of the transformation request by privilege manager 302 of
FIG. 3 only transforms the role-based access control infor-
mation and is not to be considered a full authorization pro-
cess. Identification of a role associated with the request (step
806) provides the needed role information. From the role
information, a determination is made of the set of privileges
defined for the identified role (step 808). The set of privileges
defined for the role provides the privileges to be conveyed to
the role holder.

The process overview comprises determining for each role
applicable to a particular target environment; identify each
privilege template referenced by the role. For each identified
privilege resolve the parameter references based on the target
environment, such as operating system type, system name or
subsystem identification, by mapping the defined privilege
into the corresponding equivalent definition on the target
system. When there is no system equivalent definition, gen-
erate an error and end. When the source and target system
definitions are equivalent, define the target system role-based
on the resolved privileges and end.

An environment in which the conveyed privileges are to
operate is established by identification of a target environ-
ment of the request (step 810). The environment establishes
the operational scope of the privileges. A determination is
made as to whether the identified target environment matches
the specified environment in the defined set of privileges (step
812). When the target environment matches the defined envi-
ronment, a “yes” is obtained in step 812. When a target
environment does not match the defined environment, a “no”
is obtained in step 812. When a “no” is obtained in step 812,
an error, raised (step 820). The error is typically the result of
an inability to perform an equivalence mapping between
source and target representations. Notification of the error is
made to the requester (step 822), and process 800 terminates
thereafter (step 818). The mismatch of the definitions or
incomplete definitions is cause for the operation to stop
because a valid transform to the target environment cannot be
performed as requested.

When a “yes” is obtained in step 812, a mapping of the
parameterized privileges in the privilege templates is made to
the target environment (step 814). The mapping transforms
the platform or environment independent definitions in the
privilege templates and the roles to platform or environment
specific forms as needed. The request is then performed in the
target environment (step 816), with process 800 terminating
thereafter (step 818).

Using the capabilities described in the illustrative embodi-
ments allows for the platform or environment independent
definitions of privileges and roles to be more efficiently used.
The hierarchical structure of the privilege templates and role
definitions allow for the fine-grained specifications to be

25

30

40

45

12

made while reducing the occurrence of redundant informa-
tion. The implementation of the privilege templates provides
an intermediate form of data between the specification of the
role and the privileges to be conveyed. The intermediate form
may then be combined to produce a combination of defini-
tions as needed. The privilege templates also provide a low-
level or granular definition for easier and more specific imple-
mentation of privileges.

The flowchart and block diagrams in the figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products, according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or por-
tion of code, which comprises one or more executable
instructions for implementing the specified logical function
(s). It should also be noted that, in some alternative imple-
mentations, the functions noted in the block may occur out of
the order noted in the figures. For example, two blocks shown
in succession may, in fact, be executed substantially concur-
rently, or the blocks may sometimes be executed in the reverse
order, depending upon the functionality involved. It will also
be noted that each block of the block diagrams and/or flow-
chart illustration, and combinations of blocks in the block
diagrams and/or flowchart illustration, can be implemented
by special purpose, hardware-based systems that perform the
specified functions or acts, or combinations of special pur-
pose hardware and computer instructions.

The terminology used herein is for the purpose of describ-
ing particular embodiments only and is not intended to be
limiting of the invention. As used herein, the singular forms
“a”, “an” and “the” are intended to include the plural forms as
well, unless the context clearly indicates otherwise. It will be
further understood that the terms “comprises” and/or “com-
prising,” when used in this specification, specify the presence
of stated features, integers, steps, operations, elements, and/
or components, but do not preclude the presence or addition
of one or more other features, integers, steps, operations,
elements, components, and/or groups thereof.

The corresponding structures, materials, acts, and equiva-
lents of all means or step plus function elements in the claims
below are intended to include any structure, material, or act
for performing the function in combination with other
claimed elements, as specifically claimed. The description of
the present invention has been presented for purposes of
illustration and description, but is not intended to be exhaus-
tive or limited to the invention in the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the invention. The embodiment was chosen and
described in order to best explain the principles of the inven-
tion and the practical application, and to enable others of
ordinary skill in the art to understand the invention for various
embodiments, with various modifications as are suited to the
particular use contemplated.

The invention can take the form of an entirely hardware
embodiment, an entirely software embodiment, or an
embodiment containing both hardware and software ele-
ments. In a preferred embodiment, the invention is imple-
mented in software, which includes but is not limited to
firmware, resident software, microcode, etc.

Furthermore, the invention can take the form of a computer
program product accessible from a computer-usable or com-
puter-readable medium providing program code for use by, or
in connection with, a computer or any instruction execution
system. For the purposes of this description, a computer-
usable or computer-readable medium can be any tangible



