US 9,400,795 B2

3

modifies the file created by the first application, the less
featured application may not correctly preserve the portions
of the file unknown to it due to the limitations of the less
featured application.

In some circumstances, capabilities, content, and/or prop-
erties provided by a full featured (or newer version) of the
application may be dependent upon content and/or properties
of the application file that the less featured (or older version)
application does not support. In such circumstances, a user of
the less featured application may modify the property that the
less featured application supports; however, because the less
featured application does not support the additional capabil-
ity, content, and/or properties it may not update the applica-
tion file correctly with respect to the unsupported (or
unknown) content.

For ease of discussion, embodiments and examples dis-
closed herein will be described with respect to a diagramming
application, such as VISIO® provided by the Microsoft Cor-
poration of Redmond, Wash. In a first embodiment, a full
featured version of a diagramming application may provide
properties for a shape such as color, shading, and transpar-
ency. The transparency property of the full featured applica-
tion may be dependent upon the value of the shading property,
so the first application calculates a value for the transparency
property based upon the value of the shading property. The
values for these properties may then be saved into an appli-
cation file. The application file may then be opened by a
second, less featured application. The less featured applica-
tion may support the color and shading properties for shapes,
but it may not support the transparency property or it may not
treat the transparency property as dependent upon the shape.
The second application may then modify the shading prop-
erty of the shape and write the modification to the application
file. However, because the second application does not rec-
ognize or support the dependency between the transparency
property and the shading property, the second application
may not properly update the transparency property in
response to modifying the shading property. Because the
transparency property was not correctly updated by the sec-
ond application, when the first application subsequently
accesses the application file, the first application may not be
able to correctly display the transparency property of the
shape. Although a diagramming application is used in the
example, one of skill in the art will appreciate that the
described problem is prevalent in other types of applications
such as, but not limited to, word processing applications,
spreadsheet applications, presentation applications, or any
other type of versioned applications (or different applica-
tions) capable of sharing files. One of skill in the art will
appreciate that the embodiments disclosed herein may be
practiced with other diagramming applications or other types
of applications.

Embodiments of the present disclosure provide an appli-
cation with the ability to provide meaningful values for both
native and extended objects, properties, relationships, formu-
las, and/or any other component of the self-describing file. In
embodiments, a native object, property, relationship, for-
mula, and/or component is a portion of a self-describing file
that the application supports. As such, an application may be
capable of properly handling and/or providing a value for a
native component of the file. An extended object, property,
relationship, formula, and/or component may be a portion of
a self-describing file that an application may not support. As
such, an application may not be capable of properly handling
and/or providing a value for an extended portion of the file.

Embodiments of the present disclosure solve the exem-
plary problems by providing a self-describing file that may be

10

15

20

25

30

35

40

45

50

55

60

65

4

shared between different versions of applications. In embodi-
ments, the self-describing file may be used to provide an
application with the information that may be used to correctly
calculate (or otherwise maintain) file data even if portions of
the file data are not supported by the application manipulating
the self-describing file. The self-describing file may include
information that allows an application to recalculate native
and extended properties when modifying the self-describing
file. Native properties may be values of the self-describing file
that the application supports (e.g., objects, properties, formu-
las, etc. that are known to the application). Extended proper-
ties may be values of the self-describing file that the applica-
tion does not support. In embodiments, the self-describing
file may contain an extension section, or may otherwise store
data that provides information related to the treatment of one
or more sections of data in the self-describing file. In one
embodiment, the information related to the treatment of the
data may be provided in an extension section. The extension
section may describe the proper calculation of data relied
upon for file content, e.g., including file content that a version
of an application may not support. The extension section
thereby allows the less featured version of the application to
properly preserve unknown file content.

In additional embodiments, a full featured version of an
application is able to detect when another application has not
properly calculated values of the file content. In such embodi-
ments, the full featured version of the application may recal-
culate the miscalculated values and properly update the con-
tent of the file.

FIG. 1 is an embodiment of a self-describing file 100 for
preserving unknown file contents for files that may be shared
across different versions of an application. In embodiments,
the self-describing file may contain one or more objects, such
as Object 1 106A and Object N 106B. Although the self-
describing file 100 illustrated in FIG. 1 contains two objects,
the self-describing file 100 may contain any number of
objects as illustrated by the ellipsis. In embodiments, the
objects may relate to text, shapes, values, data structures, or
any other type of data capable of being stored a file.

In embodiments, each object may have one or more prop-
erties associated with it, such as Property 1 108A, Property 2
108B, and Property 3 108C associated with Object 1 106A
and Property 1 108D, Property 2 108E, and Property 3 108F
associated with Object N 106B. Although Object 1 106 A and
Object N 106B are illustrated as having a three properties
associated with each, one of'skill in the art will appreciate that
objects stored in the self-describing file 100 may have any
number of properties associated with them or may not have
any properties associated with them.

The objects and properties illustrated in FIG. 1 may differ
depending on the application that the self-describing file 100
is employed with. For example, if the self-describing file 100
is associated with a diagramming application, the objects may
relate to different shapes and the properties may relate to
different characteristics of the shape (e.g., color, shading,
transparency, size, outline, etc.) In another embodiment, ifthe
self-describing file 100 is associated with a word processing
application, the object may be related to a paragraph or text
and the properties may be related to characteristics such as
font face, font size, style, etc. In yet another embodiment, if
the self-describing file 100 is associated with a spreadsheet
application an object may represent a table or cell and the
properties may represent characteristics such as values, for-
mulas, fonts, etc. In alternate embodiments, a property may
be any type of data included in the application. While specific
examples of object and application are described herein, one
of skill in the art will appreciate that these examples do not



