6,144,992

11

drive geometry. If the image geometry is equal to the drive
geometry 1004 then the data is decompressed 1006 using
well known “Run-Length” decompressions schemes. Once
the data is decompressed it is written 1007 to the head
buffers. After data is written to the head buffer, this part of
the process is complete. If the image geometry does not
match the drive geometry, of step 1004, an error message
1005 is displayed.

FIG. 11 depicts further detail of the fill compress buffer
from file step of the down load image step of the master
computer component of the invention. This function fills the
compress buffer by reading a head size (maximum sectors
times 512) of data from the image file. If an error occurs
during the read, an error message is displayed. First, the data
is initialized 1101 to provide data for the process. Next, the
compress buffer file size is read 1102 and tested 1103 for
error. If an error is encountered, it is displayed 1105,
otherwise a null state 1104 is used and the process returns to
the download image process of the invention of FIG. 10.

FIG. 12 depicts further detail of the get byte from com-
press buffer step of the down load image step of the master
computer component of the invention. This process subpro-
gram functions to retrieve a byte from the compress buffer.
When the compress buffer is empty, it is refilled by reading
data from the image file. First, the data is initialized 1201 for
use in the process. Next the compress pointer is tested 1202
to determine if it is greater than the size of the compress
buffer. If it is, the compress buffer is filled 1203 from the
image file. The compress pointer is then reset 1204. The byte
pointed to by the pointer/counter is returned 1206 and the
process returns to the download image process of FIG. 10.
In the event that the compress pointer does not exceed the
size of a buffer, test step 1202, the process goes through a
null state 1205 and returns 1206 the byte pointed to by the
compress pointer and returns to the download image pro-
cess.

FIG. 13 depicts further detail of the write data to had
buffer step of the down load image step of the master
computer component of the invention. This step functions to
take the byte of data passed to it and write it to the head
buffer the number of times indicated by the compress
counter. This is part of the process of decompressing the
image file. When the head buffer is full, it flushes the data
to the hard disk drive. First, the data required is initialized
1301. Next, the data is written into the head buffer 1302. The
head buffer pointer is incremented 1303. A test 1304 is made
to determine whether the head buffer is full. If it is, the head
buffer is flushed to disk 1305 and the pointers/counters are
adjusted 1306. A test 1308 is then made to determine
whether the compress count is complete. If it is, the process
returns to the download image of FIG. 10. If it is not, then
the process returns to step 1302 to move a byte into the head
buffer. If the head buffer, of step 1304, is not full, a null state
1307 is passed through before the compress count test of
step 1308.

FIG. 14 depicts further detail of the flush head buffer step
of the write data to head buffer step of the master computer
component of the invention. This step functions to flush the
head buffer data to disk. The entire head buffer is written in
one command. All needed pointers, counters, etc., are
updated along with screen information. Also, if the broad-
cast feature is enabled, the head data is broadcast to the
image slaves. First the data is initialized 1401 for use in this
process. Next, a test 1402 is made to determine if the process
is in the broadcast mode. If it is, the head data is broadcast
1403 to all image slave computers. If not, the process goes
through a null state 1404. The head buffer is then written

10

15

20

25

30

35

40

45

50

55

60

65

12

1405 to disk and the current head and cylinder data is
adjusted 1406 prior to returning to the write data to head
buffer process of FIG. 13.

FIG. 15 depicts a flow chart diagram of the slave com-
ponent of the invention. is a detailed flow diagram of the
current preferred embodiment of the Slave computer process
of the invention. The IMGSLAVE is the slave component or
process of the invention that provides the parallel disk image
process. The slave uses an IPX socket to listen for data from
the image master. A special header in the data from the
master determines the function the slave will perform. The
IMGSLAVE program cannot create or restore an image
without the IMGBLSTR program. Its function is to listen to
the network for data from the IMGBLSTR, to retrieve data
from the network and to write it to the slave’s local drive.
The slave process begins by initializing 1501 data for
processing. When a geometry packet is received 1502 from
the master the slave responds with an RSVP 1503. Next, the
slave listens for an RSVP acknowledge 1504 from the
master. After the receipt of the RSVP acknowledge, a test
1505 is made to determine whether the register for download
is valid, if not, a message indicating that the transfer is
unusable is sent 1506. Alternatively, if the register for
download is valid, then the data is downloaded 1507 to the
slave. Error checking 1508 is performed and errors are
displayed 1509 if detected. If no errors are detected, a
download complete message is displayed 1510.

The following is a listing of the computer source code
which is the current best mode preferred embodiment of the
invention. The reader can, by consulting this source code,
learn all that is necessary to produce and use the invention.

The previous description, including the listed source code,
describes the current preferred best mode embodiment of the
invention as it is performed on personal computers con-
nected through a computer network with or without a
computer server. The software programs which are used to
practice this invention typically reside in the memory and/or
hard disk storage medium of the networked computers.
While the current best mode of the invention is used on
personal computers, it is not necessary that it be limited in
this way. Any computational device which has a long term
storage medium, for example: a disk drive, a tape drive, a
CD or optical storage medium; and can be networked to
other computational devices. The size, configuration or
purpose of the computational device does not limit the use
of this invention to image long term stored data from one
computational device to another in either a peer-to-peer
mode or a client/server mode of operation. Furthermore,
while this invention is performed, in its current best mode,
by software written in the C programming language, alter-
native computer languages can equivalently used. The soft-
ware source code provided as part of the disclosure of this
patent application, shows in detail how the functional steps
of the invention are performed. Of course, it is contemplated
that the inventive concept of this invention may be imple-
mented through other techniques and in other embodiments
and in other computer languages. The computer source code
is provided to describe the best mode of operation of the
invention, such a best mode may evolve and change over
time, after the filing of this application without altering the
fundamental inventive concept of the method, which is the
imaging of computer data from one computer to one or more
others over a network using a peer-to-peer method and still
remain compatible with a client/server mode of operation,
without requiring special purpose network server hardware.

We claim:

1. A method for imaging data between two or more digital
computer systems across a computer network the method
steps comprising:



