5,905,987

27

custom object 472 “wraps” a generic repository object 474
in order to provide extended functionality through inter-
faces. In an interface-based binary object model with binary
extensibility, the repository functionality remains available
by interfaces accessed through the binary convention while
type-specific functionality may be added, including specific
executable software in order to support any required inter-
faces. It may be noted that the functionality of the repository
object 474 may be directly available in the new custom
object as shown by the extended access point 476 or may be
completely internal to the custom object 472 with exterior
client having access only to the type specific functionality
through the access point 478. The directly accessible func-
tionality corresponds to the COM object model aggregation
extensibility mechanism while the non-directly accessible
wrapping corresponds to the COM object model contain-
ment extensibility mechanism. With some tool information
models, repository activity and interaction may be com-
pletely hidden from the client.

Regardless of the extensibility mechanism, the repository
object 474 will operate in the same way by interpreting
information from the database 480 having type definition
information 482. In the currently preferred embodiment this
type information is organized into a COM object hierarchy
that can be accessed as necessary. Additionally, the generic
repository object will read and write object state information
in interface tables 484 as explained previously, including
properties on newly added interfaces as defined in the type
definitions.

In order to show an example of extension, FIG. 16 shows
the address book example as initially shown in FIG. 4 except
the contact class includes a second interface, IDial, with a
new method DialNumber. In FIG. 4, the contact class 134
supported only the IContact interface 136 while the contact
class 486 of FIG. 16 supports both the IContact interface 136
and the IDial interface 488. The DialNumber method 490 of
the IDial interface 488 will access the phone property 162 of
the IContact interface 136 and dial the number.

FIG. 17 shows the changes to the type definition object
hierarchy that occurs by adding the new interface definition
object 492 representing the IDial interface. Note also that
there will be an additional IsScopeFor relationship 190 from
PersonallnfoManager 188 to IDial 492 and Implements
relationship 196 from CContact 194 to IDial 492. Finally,
FIG. 18 shows the addition of another browser (version 2)
494 that implements the dialer interface and accesses the
address book and contact repository 412.

FIG. 19 is a diagram showing the custom object created
by wrapping a generic repository object of type contact. The
repository object supports the IContact interface 502 and the
new contact object supports a new interface, [Dial 498. The
COM object shown in FIG. 19 contains the outer contact
object 496 that is instantiated using a DLL server called
“Contact.dll.” The software in contact DLL allows the
instantiated object to support the IDial interface 498 with the
DialNumber method 500. Using COM aggregation, the
IContact interface 502 and all its associated methods sup-
ported by a generic repository object of type contact are
made available to outside clients using the COM binary
convention. The COM server for the repository object is
called “repobj.dll.” By using COM aggregation, the ICon-
tact interface 502 is directly available or passed through the
contact object to be made available to a client. Alternatively,
a COM containment wrapping could occur which would
require the contact object to access the IContact interface in
order to support whatever functionality the contact object
may support through the IDial interface or other interfaces.

10

15

20

25

30

35

40

45

50

55

60

65

28

Because type information has been entered into the
repository type definition model for the interface IDial,
should there be any properties associated therewith, they,
too, would be stored into the SQL database.

The object state repository as described for the currently
preferred embodiment may be created by a computer pro-
gram product directing and controlling a general purpose
computer. The computer program product will consist of
some medium such as magnetic disks or CD-ROM having
computer readable program code means to configure the
computer. The program code means will configure or cause
the computer to make the object state repository as described
as well as the objects themselves. Furthermore, the program
code means implementing the present invention will interact
with existing program code means and additional program
code means as a client in order to fully implement the
configuration of the general purpose computer.

The present invention may be embodied in other specific
forms without departing from its spirit or essential charac-
teristics. The described embodiments are to be considered in
all respects only as illustrated and not restrictive. The scope
of the invention is, therefore, indicated by the appended
claims rather than by the foregoing description. All changes
which come within the meaning and range of equivalency of
the claims are to be embraced within their scope.

What is claimed and desired to be secured by U.S. Letters
Patent is:

1. A method of forming a repository for storing the state
of a plurality of objects and for permitting retrieval of the
stored state for use in later created objects that is indepen-
dent of any underlying language used to form the objects,
said method comprising the steps of:

forming one or more interface means, each interface

means comprising (a) one or more properties that are
capable of describing the state of an object, (b) one or
more method means for accessing and modifying said
properties and exposing other behavior, and (c) an
interface identifier means for uniquely identifying an
interface means so as to enable accessing of said one or
more method means;

forming one or more class means, each consisting of

executable code means that implements one or more
said interface means and having a unique class identi-
fier means;

forming one or more objects as instances of one or more

said class means, the properties of the interface means
implemented by said class means defining the state of
the object, each object accessible through at least one
of said one or more interface means; and

forming a repository of stored object states for each of

said one or more objects by including in said objects a
database interface means, said database interface
means storing for each object: (a) said class identifier
means used to instantiate said object, (b) said properties
for each one or more said interface means defining the
state of the object, (¢) said interface identifier means for
each interface means implemented in said object, and
(d) a stored state identifier means for identifying the
stored object state, thereby enabling said stored object
state to be retrieved from said repository for use in a
later created object, and thereafter enabling further use
of said later created object in the state defined by said
properties.

2. A method as recited in claim 1 wherein said state
retrieval occurs implicitly during object navigation.

3. A method as recited in claim 1 wherein said state
retrieval occurs explicitly by reference to said stored state
identifier means.



