5,905,987

1

METHOD, DATA STRUCTURE, AND
COMPUTER PROGRAM PRODUCT FOR
OBJECT STATE STORAGE IN A
REPOSITORY

BACKGROUND OF THE INVENTION

1. The Field of the Invention

The field of this invention is database storage software
that preserves the state of software objects for later use by
the creating program or some other client. More particularly,
the present invention is related to such object persistence
databases that have extensibility characteristics to facilitate
implementation of custom objects.

2. Present State of the Art

With the advent of object-oriented design techniques,
many changes have occurred in the software industry. These
techniques have influenced virtually every aspect of appli-
cation development and implementation and currently many
different object oriented products and tools exist. This runs
the gamut from languages supporting the creation of objects
such as C++, to system level mechanisms allowing avail-
ability of objects registered thereto, to the operating system
itself, and to any and all applications or other clients desiring
to access such.

Many times, it is desirable to store an object’s state as it
is found in an active object so that another active object may
be created at a later point in time long after the original
active object has been destroyed. Thus, an application may
instantiate a number of objects, operate on those objects to
access and modify their state, save or persist the object’s
state in a more permanent storage such as a disk drive, and
terminate execution. When the user desires to commence the
application program at a later time, the particular stored state
may be recalled and placed into newly instantiated objects
so that the application may operate on the objects as they
were originally stored. Furthermore, a different application
or other client may recreate active objects from the persis-
tent store thus allowing the capability and state of the
persisted objects to be shared across different program
entities.

As mentioned, having a database or repository of such
persisted object states allows different clients (i.e., applica-
tion programs, other objects, other software components)
access to such objects so that they may be shared. By placing
a high degree of functionality into the objects themselves,
much of the development effort is centralized around object
design and implementation so as to allow a decreasing
amount of effort to be focused in the actual application
development, reduce unnecessary duplication of effort, and
avoid inconsistent interpretations of and updates to the
object state by different applications.

For example, in a software development environment
different software tools are used in the process of designing
and creating a particular application program. Such tools,
however, are related in that they may operate on the same
types of information. A compiler and a source code analysis
tool will both operate on application source code files and
have overlap in certain behaviors for opening and parsing
such files. By placing such behavior in a common software
object, duplication of effort is eliminated, the individual
application development time reduced, and the tools are
assured of having the same interpretation of the source code
files.

In a multi-client environment, with each client accessing
the same repository of persistently stored object states, a

10

15

20

25

30

35

40

45

50

55

60

65

2

number of problems arise that make it difficult to implement
a general purpose common repository. For example, each
different application may have application-specific require-
ments which will necessitate extending the description of the
object state in the repository. For this reason, it is advanta-
geous to allow extension of objects that have the object state
persistence characteristics.

Extensibility also allows the use of a general object-
oriented persistence implementation. In other words, an
object may be based through inheritance or other extension
mechanism on another object that has the object state
persistence characteristics the inherited object needs. In this
manner, a general object persistence functionality may be
implemented a single time and the system mechanisms for
extensibility can be used to propagate such functionality to
other custom objects. There are different underlying object
systems upon which to base an object-oriented object state
repository that each have different configuration and exten-
sibility mechanisms.

While class inheritance can be used in a compiled lan-
guage environment to propagate the persistence character-
istics to other more specific objects, a language inheritance
mechanism for implementing such inheritance requires pub-
lication of the source code as well as an added compilation
step. This occurs because language inheritance is imple-
mented by a source code compiler which has an inherent
need to use the source code of the underlying object state
implementation in order to make that implementation avail-
able to the more specific object. The above is an example of
alanguage based object system with a language extensibility
model.

A binary based or executable code object system will
overcome part of this problem and allow objects created by
different source code implementations to coexist. Ideally, a
binary based object system should allow some form of
binary extensibility thereby allowing only an operational
specification of the object to suffice in accessing and extend-
ing capabilities. In practice, however, many systems require
that the extension of the object require client understanding
of all underlying object functionality and changes therein to
add state persistence can require a class to expose its
proprietary source code to the extending class, which is
undesirable for the developers of the class being extended.

An interface-based object system that supports multiple
interfaces allows incremental extension without access to
source code being extended as long as the interfaces used by
the client operate the same on a binary level. State persis-
tence functionality may be added easily and can provide
greater functionality and extensibility to custom objects.

It is also advantageous to access an existing stored object
state through an object that has greater functionality than the
object whose state was originally stored. When this can be
accomplished, a more dynamic development environment
results wherein simultaneous development between different
parts using the same object repository can occur.

SUMMARY AND OBJECTS OF THE
INVENTION

It is an object of the present invention to provide perma-
nent storage of a software object state in a database so that
an object may be recreated at a later time having the stored
state used therein.

It is another object of the present invention to place object
persistence capabilities on interfaces rather than class tem-
plates so as to facilitate expanded extensibility.

Another object of the present invention is to allow easy
extensibility of the persistent capabilities to custom objects



