5,546,580

13

remote updating of the logical flowsheets in each worksta-
tion.

In step 802, a logical flowsheet in one of the workstations
stores a new set of parameter values for a particular patient
record. As illustrated in FIG. 9 and described above, the
database server stores the new parameter values in the
patient record. In addition, the database server in step 804
creates a database event that lists the changes to the patient
flowshect. In step 806, the database server places the data-
base event in the buffers of all flowsheet applications which
have registered an interest in such database events. For
example, with reference to FIG. 8, assume that logical
flowsheet 704A stores a new parameter value for patient X.
The database server 700, in addition to storing the new
parameter value, creates a database event that lists the new
parameter value and places the database event in buffers 716
and 718 for logical flowsheets 706A and 708A, respectively,
because logical flowsheets 706A and 708A pertain to patient
X. The database event is not placed in buffer 714 because
logical flowsheet 704A originated the new parameter value
and has already processed it. The database event is not
placed in buffer 720 because corresponding logical flow-
sheet 710A pertains to patient Y. It is assumed that logical
flowsheets 706A and 708A have previously registered an
interest in the new parameter value.

In step 808, the database sends a database tickle to the
logical flowsheets which have registered an interest in the
new parameter value. The database tickle is a brief message
that indicates to the logical flowsheet that its buffer contains
a new database event for processing. The database tickle
contains a sequence number, which indicates the chrono-
logical order of the database event and text, which may
indicate the user that generated the database event.

The logical flowsheet in step 810 gets the database events,
either immediately or at a later time when it is available to
do so. The logical flowsheet may get the database events as
part of a store operation, as shown in FIG. 9 and described
above, or as part of a remote update operation, as shown in
FIG. 11 and described below. After the logical flowsheet gets
the database events, the database server deletes the database
events from the buffer in step 812.

The remote update operations for each flowsheet appli-
cation are shown in FIG. 11. Operations by the application
task are shown on the left side of FIG. 11, and operations by
the logical flowsheet are shown on the right side of FIG. 11.
In step 850, the logical flowsheet receives the database tickle
from the database server, indicating the presence of a
databasc event in the buffer for that logical flowsheet. In step
852, the logical flowsheet calls a routine to receive database
events. The sequence number of the database tickle is
checked in step 854. If the sequence number identifies a
database event that has already been processed by the logical
flowsheet during a store operation, no update is required and
the operation is terminated.

Assuming that the database tickle contains a new
sequence number, a callback to the graphic user interface is
evoked in step 856. The workstation is locked in step 858 so
as to prevent further user interaction during the update
process. In step 860, a monolog box is displayed. The
monolog box indicates that the flowsheet is being updated as
a result of a change by another user or instrument. For
example, the monolog box may state “Data for this patient
has been updated by (list of users). The flowsheet will be
refreshed to retrieve this data”.

In step 862, the logical flowsheet calls the routine to
process database events and obtains all buffered database

10

20

25

30

45

50

55

60

65

14

events from its corresponding buffer in step 864. If the buffer
contains database events in addition to the one identified by
the database tickle, a callback is evoked in step 866, and the
monolog box is updated in step 868 to reflect the additional
users or instruments that have changed the patient flowsheet.
Steps 866 and 868 are omitted when the buffer does not
contain additional database events.

In steps 870 and 872, the database events are processed as
described above in connection with steps 744 to 748 in FIG.
9. That is, the database events are processed in sequence, and
a determination is made as to the necessity for updating the
display screen. The display screen is updated if necessary in
step 874 after processing all database events, and the work-
station is unlocked in step 876.

While the invention is described in terms of preferred
embodiments in a specific system environment, those skilled
in the art will recognize that the invention can be practiced,
with modification, in other and different hardware and
software environments within the spirit and scope of the
appended claims.

What is claimed is:

1. A method for coordinating updates to a medical data-
base in a medical information system, the method compris-
ing the steps of:

entering a first data value for a record in said medical

database at a first workstation and a second data value
for said record at a second workstation, each of the
workstations including a display screen;

permitting said first workstation to access said record in
said medical database during data entry into said record
at said second workstation and permitting said second
workstation to access said record in said medical data-
base during data entry into said record at said first
workstation;

storing said first data value in said record in said medical
database after completion of data entry for said record
at said first workstation and storing said second data
value in said record in said medical database after
completion of data entry for said record at said second
workstation, said first and second data values being
stored in said medical database in dependent of the
order in which they are entered at said first and second
workstations; and

recording a correction history for said record, said cor-
rection history containing information as to the update
of said record with said first data value and information
as to the update of said record with said second data
value.

2. A method as defined in claim 1 further including the
step of locking said record to prevent access to said record
by said workstations only during the steps of storing said
first and second data values in said record in said medical
database, thereby enabling concurrent data entry at said first
and second workstations.

3. A method as defined in claim 1 further including the
steps of defining database events including a database event
for each of said first and second data values, placing
database event data representative of said database events in
buffers corresponding to said workstations, notifying said
workstations of said database events, and transferring said
database event data from said buffers to the corresponding
workstations when each of said workstations requests such
transfer.

4. A method as defined in claim 3 further including each
of said workstations registering an interest in selected data-
base event types, wherein the step of notifying said work-



