5,890,176

-continued
public:
CExampleObject (void);
CExampleObject (CExampleObject *pOther);
private:
CExampleMember cExampleMember;
¥

The following code fragment illustrates that, when con-
structing the containing object, the address of the containing
object must be passed to all member objects:

CExampleObject::CExampleObject (void)
:cExampleMember (this)
{

CExampleObject::CExampleObject (CExampleObject *pOther)
:CmyBaseClass ((cMyBaseClass *) pOther),
cExampleMember (this, &pOther->cExampleMember)

Another special case occurs when an object derived from
the CEngineObject class points to an object which is not
derived from the CEngineObject class. This case is similar
to that discussed above with member objects. In particular,
if the non-CEngineObject must be changed, the CEngin-
eObject must be checked for proper version. If a copy of the
CEngineObject object must be made, a copy of the non-
CEngineObject object should also be made. This can be
handled by making the pointed-to object derive from the
CMember class discussed above and constructing it with a
pointer to the CEngineObject.

When the CEngineObject object is changed, a copy of the
non-CEngineObject object must also be made. This is nec-
essary because when one version of the CEngineObject
object is deleted, there would be no way to tell if any other
CEngineObject object versions were pointing to the non-
CEngineObject, so there would no way to tell whether to
delete the non-CEngineObject or not. However, this prob-
lem can be solved by reference counting the non-
CEngineObject as discussed above.

FIG. 8 is an illustrative dialog box generated by the user
interface software (214, FIG. 2) for displaying various
versions of a document. The dialog box 800 has a scrolling
listbox 802 which indicates each version present in a par-
ticular file. The listbox displays the version name, editors,
last edit time and any remarks made by the editors. A further
textbox arca 804 is provided to enter additional remarks. A
new version can be created by operating the “Create Ver-
sion” button 806.

Operation of the create version button 806 causes the
dialog box 900 to be displayed. This latter dialog box allows
the user to enter a version name in editbox 902. This version
name may be the name used internally to identify each
version or the software may choose another name internally.
A textbox area is also provided for additional comments.

Although only one embodiment of the invention has been
disclosed, it will be apparent to those skilled in the art that
various changes and modifications can be made which will
achieve some of the advantages of the invention without
departing from the spirit and scope of the invention. These
and other obvious modifications are intended to be covered
by the appended claims.

10

15

20

25

30

35

40

45

50

55

60

65

14

What is claimed is:

1. Apparatus for constructing a document from a plurality
of objects in a computer system having a memory and a
non-volatile storage, a document object being accessed
whenever an invocation of one of the document object’s
methods or the manipulation of one of the document object’s
attributes is required, the apparatus comprising:

a demand loader object residing in the memory and
associated with each of the plurality of objects, each of
the demand loader objects including program logic for
loading the associated object into the memory from the
storage when the associated object is accessed; and

object pointer objects residing in the memory and con-
necting two of the plurality of objects, each object
pointer object being a member of a first one of the two
objects and having a pointer therein pointing to a
demand loader object associated with a second one of
the two objects.

2. Apparatus according to claim 1 wherein each demand
loader object further includes a reference count attribute
having a reference count stored therein which reference
count indicates the number of object pointers which point to
the each demand loader object.

3. Apparatus according to claim 2 wherein each object
pointer object includes program logic for updating a refer-
ence count attribute in a demand loader object to which the
object pointer points.

4. Apparatus according to claim 1 wherein each demand
loader object includes an object ID for locating an associated
object in the non-volatile storage.

5. Apparatus according to claim 1 wherein each demand
loader object further includes a pointer to an associated
object.

6. Apparatus for use with a computer system having a
memory and a non-volatile storage, the apparatus creating a
new version of a document, which is composed of a plurality
of objects which are interconnected by object pointers, a
document object being accessed whenever an invocation of
one of the document object’s methods or the manipulation of
one of the document object’s attributes is required, in
response to a user request to change one of the plurality of
objects, and comprising:

a demand loader object residing in the memory and
associated with the one object, the demand loader
object including program logic for loading the one
object into the memory from the storage when the one
object is accessed;

means in the demand loader object for creating a list of
object versions for the one object, the list including a
version ID and a pointer to a copy of the one object for
each object version; and

means responsive to the request by making a copy of the
one object and inserting a version ID and a pointer to
the one object copy into the list.

7. Apparatus according to claim 6 wherein the new
document version has a document version ID and the
copying means is responsive to the request for inserting the
document version ID into the list.

8. Apparatus according to claim 7 wherein the copying
means is responsive to the request for checking the list to
determine whether the document version ID is in the list.

9. Apparatus according to claim 8 wherein the means
responsive to the request makes a copy of the one object and
inserts the document version ID and a pointer to the one
object copy into the list if the document version ID is not in
the list.

10. Apparatus according to claim 7 wherein the demand
loader object comprises an object ID for retrieving the one
object from the storage into the memory.



