5,890,176

11

class CExampleObject: public CMyBaseClass

public:
inline void SetDataMember (lushort value);

private:
lushort cDataMember;

inline void CExampleObject::SetDataMember (lushort value)
CheckVersion(); // call CengineObject method to check

// if we need a new version before the data

// member is changed. A New

// version will be created, if

// necessary

cDataMember = value;

As previously mentioned, the base method,
CheckVersiono, will determine if the existing version of the
object is current by comparing the object version to the
current document version. If the object version is not
current, the CheckVersiono method will call a New Versiono
method in the object. For example, sample code for the
NewVersiono method might look like the following code
fragment for the above-mentioned object, CExampleObject:

void CExampleObject::NewVersion (void)
{

new CExampleObject (this)
¥

The purpose of New Versiono method is to create a copy
of the existing object (identified by the *this pointer) by
calling a special copy constructor which is discussed below.
This “new” object copy then becomes the “old” version of
the object while the existing object (*this) becomes the
“new” version. Since the existing object is the “new”
version, upon return from the CheckVersiono method, the
same modification operations can be performed whether a
“new” version was created or not. Therefore, it is not
necessary to check whether the CheckVersiono method
created a new version or not.

Each subclass of CEngineObject must declare and imple-
ment a “version constructor” which is a copy constructor
that copies all members of the current object version. It has
the form illustrated by the following code fragment:

CExampleObject::CExampleObject (CExampleObject *pOther)
:CMyBaseClass ((CMyBaseClass *) pOther)
{

cMemberl = pOther->cMemberl;
cMember2 = pOther->cMember2;

This constructor constructs the “old” object version from the
new object version to which the pointer Other points. In
order to prevent an infinite recursion, the members must be
modified directly without calling the Check Versiono method
first.

Member objects also present special cases. In particular,
when a member object is modified, it is necessary not only

10

20

25

30

35

40

45

50

55

60

12

to check and, possibly, create a new version copy for the
object modified, but also the object in which the modified
object is a member must be checked to insure its version is
current. Unfortunately, due to the nature of object-oriented
programming, the member object does not automatically
have information which would indicate the identity of the
containing object or even if it is a member of some object.

In accordance with a preferred embodiment, the member
object is provided with information that indicates whether
any objects contain it and identifies those objects. The
identifying information for each object is stored in an
attribute which is part of each object. This attribute is a
CEngineObject pointer designated as *cWhole. When a
member object is constructed in a containing object, the
member object is passed a pointer to the containing object.
The member object saves this pointer in the *cWhole
attribute. Later, when the member object is about to be
changed it calls the CheckVersion() method of the contain-
ing object via the stored pointer, cWhole>CheckVersion() to
update the object version of the containing object.

This functionality has been encapsulated in an interme-
diate class, the CMember class. The CMember class has a
constructor of the form CMember(CEngineObject*) and it
has an inline CheckVersiono which will perform the method
call cWhole>CheckVersion(). Consequently, any subclasses
derived from the CMember class will have the capability
discussed above. The following code fragment is an example
of a derivation of a subclass, CExampleMember, from the
CMember class:

class CExampleMember:public CMember
{
public:
CExampleMember (CEngineObject *pWhole);
CExampleMember (CEngineObject *pWhole,
CExampleMember *pOther);
void SetData (lushort value);

private:
lushort cMyData;

g

CExampleMember::CExampleMember (CEngineObject *pWhole)
:CMember (pWhole)

{

cMyData = 0;

CExampleMember::CExampleMember (CEngineObject *pWhole,
CExampleMember *pOther)
:CMember (pWhole)

cMyData = pOther->cMyData;

void CExampleMember::SetData (lushort value)
CheckVersion(); // call CMember::Check Version()
cMyData = value;

The following code fragment is an example of a subclass,
CExampleObject, that uses the CMember class:

class CExampleObject: public CMyBaseClass

{

