6,009,476

37

execution moves to another virtual machine 240, 244. The
access trap is reasserted when execution returns to the Dos
VM 242 in the windowed mode or upon a switch from the
full screen mode to the windowed mode.

Whenever the access trap detects an access attempt, the
VDD 50' is provided the access characterizing information
obtained by the trap. Specifically, the board library 74", as
shown in FIG. 9, is provided with the access attempt
information by the operating system 54 logically through the
connection 246. Preferably, the components of the VDD 50'
implement a single context version of the display driver 50.
However, multiple contexts can be readily supported as
appropriate to support multiple controllers 19 under the Dos
VM 242.

Within a single context, the hardware interface objects
130", 132, 134", and 138' operate to store the access char-
acterizing data so as to maintain a representation of the
intended state of the display based on the successive
attempts to directly access the hardware. Preferably, the
RegClassMap structures associated with the hardware inter-
face objects are augmented with pointers to storage space for
the state information associated with each class of hardware
sub-elements. The hardware interface objects also provide
emulation routines that generate operating system calls with
the assistance of the O/S object 128' to cause the display of
a suitable representation of the intended screen appearance.
These calls are applied to the operating system layer 54 and,
in turn, suitably routed to the display driver 50. Upon a
switch to a full screen mode, the display state maintained by
the hardware interface objects can be used directly to
establish the intended display state by applying the state data
to the register interface 30.

The parser routine of the device driver 50' is used effec-
tively in reverse to analyze the access characterizing infor-
mation. Preferably, the access traps serve to characterize
access attempts to device classes implicitly by the assign-
ment of addresses to class trap handlers. Thus, the class,
address and value provided with the access are collected by
the trap handlers and provided to the reverse parser routine.
Thus, with each trapped access attempt, the access related
data is stored in the corresponding RegClassMap identified
storage. The reverse parser also performs an analysis against
the register definitions ultimately determined from the class
register instructions stored in the modes.dmm file. The result
of the analysis is a logical determination of whether the
register intended to be written is an index register, or other
management function register, or a data register. Where, the
intended register is an index register or other management
function register, the resulting change in state is recorded.
Where the intended register is a data register, the new state
of the register is recorded and then a determination is made
as to whether some emulation is required. Depending on the
particular register being written, no emulation may be
required or the full index and data access operation may then
be performed.

Consequently, substantially the same hardware and oper-
ating system interface object definitions are preferably used
and, further, the same methods of selecting between multiple
functions that support differing display characteristics can be
used to select among display characteristic emulation rou-
tines implemented by the encapsulated hardware interface
modules. Where the parser routine detects an identifiable
mode set, the shell object 126' may be called via the O/S
object 128' to perform a mode set operation as previously
described. The substantially linear call sequences imple-
mented by the operating system objects 120', 126' are
directly enabled. The function call relation between the

10

15

20

25

30

35

40

45

50

55

60

[

5

38

operating system interface objects and the remainder of the
VDD 50' is therefore the same as in the case of the device
driver 50.

VIII. Conclusion:

Thus, a highly optimal device driver architecture suitable
for supporting a complex and multi-function peripheral
controller as well as operating as a virtual device driver has
been described. The architecture of the described device
driver directly supports dynamic configuration of the device
driver at load time to specifically match the hardware
configuration of the peripheral controller as preferably deter-
mined directly from the hardware on a per-sub-element
detailed basis, that employs a modular architecture specifi-
cally supporting functional isolation of module changes in
correspondence with specifics sub-element designs, that
provides for an efficient mechanism for performing mode
switches of the operating state of the controller, that provides
an efficient mechanism for maintenance and management of
persistent data independent of mode switches through the
support of independent context selectively with the perfor-
mance of mode switches, and that provides for the efficient
management of color depth transformation in video display
controller applications. Furthermore, notwithstanding the
modular complexity of the architecture, the supported inter-
operative relationship between the modules enables substan-
tially linearized call sequences to virtualize and implement
the operating system API calls.

In view of the above description of the preferred embodi-
ments of the present invention, many modifications and
variations of the disclosed embodiments will be readily
appreciated by those of skill in the art. It is therefore to be
understood that, within the scope of the appended claims,
the invention may be practiced otherwise than as specifically
described above.

What is claimed is:

1. A device driver supporting the virtualized execution of
applications within a computer system, said device driver
comprising:

a) an interface to an operating system that supports an
access trap mechanism permitting said device driver to
selectively establish an access trap for accesses by a
predetermined application to a predetermined control-
ler coupled to said computer system;

b) a predetermined set of mode set programs, each includ-
ing a sequence of instructions defining programming
accesses to said predetermined controller to establish a
respective one of a like set of operating modes of said
predetermined controller; and

¢) a parser routine for analyzing successive trapped access
attempts by said predetermined application to said
predetermined controller, said parser routine analyzing
said successive trapped access attempts against said
predetermined set of mode set programs to identify an
intended operating mode of said predetermined
controller, wherein said predetermined controller
includes a plurality of functional sub-elements provid-
ing for the implementation of a like plurality of opera-
tional aspects of said controller, and wherein said
device driver includes a like plurality of interface
modules, each of said plurality of interface modules
providing for the emulation of a corresponding one of
said plurality of operational aspects defining said
intended operating mode of said predetermined con-
troller.

2. The device driver of claim 1 wherein said plurality of
interface modules further selectively provide for the pro-
gramming of respective ones of said plurality of functional
sub-elements of said predetermined controller.



