US 7,257,772 B1

7

Additionally, ML elements can also be used to represent
implicit user setting and preferences. The implicit user
setting and preferences can be used to preserve the different
document option settings and preferences set by the user in
editing the document. The implicit user setting and prefer-
ences are generally intended to restore the application envi-
ronment to the same state in terms of user interface behavior
(and other aspects) when the document is reopened. For
example, the restored application environment may include
the view in which the document was last edited, whether
XML validation was enabled, and the like.

Some of the implicit user setting and preferences prop-
erties can be saved inside the “docPr” element (discussed
with reference to FIG. 8, below) and others of the implicit
user setting and preferences can be saved inside the Docu-
mentProperties element. The values of the children of Docu-
mentProperties can be arbitrary strings that are entirely
user-defined.

FIG. 7 illustrates an exemplary document properties ele-
ment having user-defined arbitrary strings, in accordance
with aspects of the present invention. The figure illustrates
listing 700 having a document properties element (710).
Document properties element 710 is a container element,
which may include arbitrary strings that can be user-defined.
Document child elements 720 include elements such as
“Title,” “Subject,” “Author,” and the like. The contents of
the element typically include user-defined arbitrary strings
such as “My Document,” “The business plan of a company
I work for,” and the like.

The “docPr” element is a container element in which the
children elements can be used by the application to preserve
the states of the different application behaviors activated or
deactivated by a user. The states of the different application
behaviors are available to the user in various parts of the
application user interface (e.g., such as the “Options” dialog,
and the like). The states of the different application behav-
iors are represented by elements. Some of the children
elements are arranged to accept special attributes as well as
accepting other elements as children. Table 1 lists and
describes various application behaviors that are represented
by various elements.

TABLE 1

view represents the view in which the document
was last edited. Its “val” attribute can be
used to specify the view.

specifies the zoom in which the document
was last edited. Its attributes contain the
actual zoom setting.

determines whether font descriptions are
embedded in the file even if they are
typically present on the system.

zoom

doNotEmbedSystemFonts

attachedTemplate a pointer to the template file the document
is based on.

documentProtection represents various aspects of the document
protection state.

defaultTabStop determines the positions of the default tab

stop.

specifies different settings for the
algorithm that lays out characters when the
document is displayed in the application or
printed.

used to determine for which browser the
document, when saved as HTML, is
supposed to be optimized.

determines whether the document should
be validated against the attached XML
schema (if any).

determines whether the app should allow
the user to save the document as XML if

characterSpacingControl

optimizeForBrowser

validateAgainstSchema

savelnvalidXML

10

15

20

25

30

35

40

45

50

55

60

65

8

TABLE 1-continued

it does not adhere to the attached
customer-defined schema.

represents the option to ignore mixed
XML content for validation purposes and
when saving to customer-defined schema
only.

determines whether placeholder text is
automatically generated and shown by the
app for each empty customer-defined
XML element.

controls the underlines’ appearance near
customer-defined schema violations.

ignoreMixedContent

alwaysShowPlaceholderText

doNotUnderlineInvalidXML

footnotePr complex element (with additional
children) used to represent default
properties of a footnote.

endnotePr complex element (with additional

children) used to represent default
properties of an endnote.

FIG. 8 illustrates an exemplary document preservation
(“docPr”) element, in accordance with aspects of the present
invention. The figure illustrates listing 800 having a docu-
ment preserve (810). Document preserve element 810 is a
container element, which includes child elements that may
include child elements that store settings for selected behav-
iors. Document preserve elements 820 include elements
such as “view,” “zoom,” “doNotEmbedSystemFonts,” and
the like. Each of the disclosed elements and attributes can be
mapped to an internal word processor structure that (if
present) represents a corresponding feature in the applica-
tion.

FIG. 9 illustrates of a process 900 flow for representing
document options, properties and backwards compatibility
settings using XML, in accordance with aspects of the
invention. After a start block, the process moves to block
910, at which point a document is opened for editing by a
user. The selection of the file for opening may, for example,
include highlighting the selected file within a file browser.
The document may be, for example, a document that
includes spreadsheet cells or word-processor paragraphs.
The document may be stored in a proprietary format of the
application process.

At block 915, the process encodes in an ML format the
automatically generated properties of the electronic docu-
ment. The automatically generated properties can be saved
inside the “DocumentProperties” element container. The
application process typically provides a dialog that allows
the user to specify the properties.

Continuing at block 920, the process typically provides a
dialog that allows the user to specify the custom/user-
defined properties. The custom/user-defined properties can
be saved as ML elements inside the “CustomDocument-
Properties” container element.

At block 925, the process encodes in an ML format the
backwards compatibility settings supported by an applica-
tion. The ML elements used to represent these backwards
compatibility settings can be saved inside of the “compat”
element container

Flowing to block 930, the process encodes in an ML
format the application environment properties of the opened
electronic document. The “docpr” element is a container
element in which the children elements can be used by the
application to preserve the states of the different application
behaviors activated or deactivated by a user.

At block 935, the document is saved using an ML format.
Saving the “native” properties of the process in an external
ML file permits other editing applications to preserve the



