US 7,284,271 B2

15

This role list includes one refined “scope” element and
four “role” elements. The first “role” element means: fred
running calendar@contoso.com can access all information,
through all methods. Recall that role template “rt0” allows
access to all information through all methods. The second
“role” element means: fred running
calendar@fabrikam.com only has read-only access to all
information. The third “role” element means: barry running
any application has read-only access to only public infor-
mation, but only those pieces of public information that are
categorized as golf related. This last access stipulation
represents a refinement that was added to this role list to
allow for more fine-grained control over access privileges. It
is accomplished by reference to the local refined scope listed
at the beginning of the role list. The last “role” element
means: any and all users running the app@cpandl.com
application have no access to any information held within
this service.

The method 400 then includes an act of receiving a
request from the requesting entity to perform at least one of
the command methods, the request identifying the request-
ing entity (act 404). In one embodiment, the request iden-
tifies, at least in encrypted form, the user identifier, the
application identifier, the platform identifier, and the cre-
dential type identifier.

The method 400 then includes an act of identifying a role
definition corresponding to the requesting entity (act 405).
First, the appropriate role list is identified by identifying the
owner and type (e.g., content, role list, system) of the target
data structure. Then, the user identifier, application identi-
fier, platform identifier, and credential type identifier
received in the request is matched against those similar
fields in the “subject” element of the role definition. This
may be accomplished via a database lookup.

The matching process may be as follows. In a first
matching operation, the user identifier in the message is
matched against “userld” attributes in the “subject” element
of the role definitions to find a first set of matching role
definitions. Once this first set of matching role definitions is
identified, a second match operation is performed. In this
second matching operation, the credential type identifier
associated with the request is matched with the “credType”
attribute in the “subject” element of the first set of role
definitions to narrow to a second set of matching role
definitions. If there are no role definitions in the second set
of role definitions, then all role definitions from the first set
having a “subject” elements containing the “credlype”
attribute are discarded keeping only those “subject” ele-
ments that do not contain a “credType” attribute to form the
second set of role definitions.

Then, a third matching operation is performed in which
the combined platform identifier and application identifier of
the request are matched against the “appAndPlatformId”
attribute of the second set of role definitions. This generates
a third set of role definitions. If there are no role definitions
in the third set of role definitions, then all role definitions
from the second set having a “subject” elements containing
the “appAndPlatformId” attribute are discarded keeping
only those “subject” elements that do not contain an
“appAndPlatformId” attribute to form the third set of role
definitions. If a matching role element is not found, the
request is failed with an authorization fault. Also, if the
matching role definition contains an “expiresAt/” element
that indicates that the role definition has expired, then an
error message is also returned.

Note that the role list structure allows for different role
definitions even for the same user and the same application

10

15

20

25

30

35

40

45

50

55

60

65

16

should the user authenticate using different authentication
methods and thus create different credential type identifiers.
Thus, a user authenticating using a more secure authentica-
tion mechanism may be granted more extensive access than
the same user using a less secure authentication mechanism.

The role list lookup may be farther optimized through the
use of licenses. When an application sends a message
containing an identity license, the authorization station 130
finds a role template and a refined, local scope correspond-
ing to the request as described above. The authorization
station 130 then places this in the request as an “authorized
role”. Once the request has been fulfilled, the authorization
station 130 sends a response back which includes an <autho-
rizedRole/> element. When the application sends a subse-
quent request back to the same service, the request includes
both the identity license and the authorized role license.
During authorization, the authorization station 130 notices
the authorized role license, and determines that it is valid
and that it was properly issued to the identity sending the
message. The authorization station 130 then uses the infor-
mation contained within the authorized role element (i.e.,
the appropriate role template with the refined, local scope),
instead of once again accessing the role list database. Thus,
a database lookup process is avoided for subsequent
accesses to the same service.

The method 400 includes an act of determining access
permissions for the requesting entity with respect to the
command method using the role definition corresponding to
the requesting entity (act 406). In order to accomplish this,
the role templates in the service’s role map are extracted and
only the highest priority role template is kept. The specified
command method is compared with the applicable role
template to determine if the method is allowed. If it is not
allowed, then an error message is returned. If the method is
allowed, then the scope corresponding to that method (as
referred to in the role template) is combined with any refined
scope referenced by the role definition found within the role
list. This information is then passed to the target service
along with an authorization to proceed.

The present invention has the advantage of performing
authorization in a standardized manner regardless of the
target service that is desired. The service is only factored in
when selecting an appropriate role map.

In addition, this is accomplished while providing a stan-
dardized set of templates that may be used for coarse grained
control over access. Thus, applications that are not able to
add further refined scopes to the role list may at least have
some level of access control over the service’s data struc-
tures. Furthermore, those applications that can define more
refined scopes may have those more refined scopes included
in the role list documents to allow for more user-specific and
refined control offer access permissions. Accordingly, the
present invention provides for a high level of control over
access permissions in a manner that is relatively independent
of the underlying service being targeted.

As a final advantage, note that scopes define views on a
document. Thus, unlike conventional access control lists, the
present invention facilitates access granularities below the
document level. In other words, portions of documents may
be viewed or operated upon, while other portions remain
secure.

Having now described the principles of the present inven-
tion in detail, it is noted that the precise hardware configu-
ration that implements the above-described features is not
important to the present invention. For example, it is not



