6,002,867

1

DEVELOPMENT SYSTEM WITH METHODS
PROVIDING VISUAL FORM INHERITANCE

COPYRIGHT NOTICE

A portion of the disclosure of this patent document
contains material which is subject to copyright protection.
The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent
disclosure as it appears in the Patent and Trademark Office
patent file or records, but otherwise reserves all copyright
rights whatsoever.

BACKGROUND OF THE INVENTION

The present invention relates generally to system and
methods for creating software programs. More particularly,
the present invention relates to a visual development system
and methods for improved form-based development of soft-
ware programs.

Before a digital computer may accomplish a desired task,
it must receive an appropriate set of instructions. Executed
by the computer’s microprocessor, these instructions, col-
lectively referred to as a “computer program,” direct the
operation of the computer. Expectedly, the computer must
understand the instructions which it receives before it may
undertake the specified activity.

Owing to their digital nature, computers essentially only
understand “machine code,” i.e., the low-level, minute
instructions for performing specific tasks—the sequence of
ones and zeros that are interpreted as specific instructions by
the computer’s microprocessor. Since machine language or
machine code is the only language computers actually
understand, all other programming languages represent
ways of structuring human language so that humans can get
computers to perform specific tasks.

While it is possible for humans to compose meaningful
programs in machine code, practically all software devel-
opment today employs one or more of the available pro-
gramming languages. The most widely used programming
languages are the “high-level” languages, such as C or
Pascal. These languages allow data structures and algo-
rithms to be expressed in a style of writing which is easily
read and understood by fellow programmers.

A program called a “compiler” translates these instruc-
tions into the requisite machine language. In the context of
this translation, the program written in the high-level lan-
guage is called the “source code” or source program. The
ultimate output of the compiler is an intermediate module or
“object module,” which includes instructions for execution
by a target processor. In the context of Borland’s Turbo
Pascal and Object Pascal, the intermediate module is a
Pascal “unit” (e.g., .TPU file). Although an object module
includes code for instructing the operation of a computer, the
object module itself is not usually in a form which may be
directly executed by a computer. Instead, it must undergo a
“linking” operation before the final executable program is
created.

Linking may be thought of as the general process of
combining or linking together one or more compiled object
modules or units to create an executable program. This task
usually falls to a program called a “linker.” In typical
operation, a linker receives, either from the user or from an
integrated compiler, a list of modules desired to be included
in the link operation. The linker scans the object modules
from the object and library files specified. After resolving
interconnecting references as needed, the linker constructs

10

15

20

25

30

35

40

45

50

55

60

65

2

an executable image by organizing the object code from the
modules of the program in a format understood by the
operating system program loader. The end result of linking
is executable code (typically an .EXE file) which, after
testing and quality assurance, is passed to the user with
appropriate installation and usage instructions.

“Visual” development environments, such as Borland’s
Delphi™, Microsoft® Visual Basic, and Powersoft’s
PowerBuilder™, are rapidly becoming preferred develop-
ment tools for quickly creating production applications.
Such environments are characterized by an integrated devel-
opment environment (IDE) providing a form painter, a
property getter/setter manager (“inspector”), a project
manager, a tool palette (with objects which the user can drag
and drop on forms), an editor, a compiler, and a linker. In
general operation, the user “paints™ objects on one or more
forms, using the form painter. Attributes and properties of
the objects on the forms can be modified using the property
manager or inspector. In conjunction with this operation, the
user attaches or associates program code with particular
objects on screen (e.g., button object); the editor is used to
edit program code which has been attached to particular
objects.

At various points during this development process, the
user “compiles™ the project into a program which is execut-
able on a target platform. For Microsoft Visual Basic and
Powersoft PowerBuilder, programs are “pseudo-compiled”
into p-code (“pseudo” codes) modules. Each p-code module
comprises byte codes which, for execution of the program,
are interpreted at runtime by a runtime interpreter. Runtime
interpreters themselves are usually large programs (e.g.,
VBRUNxx.DLL for Visual Basic) which must be distributed
with the programs in order for them to run. In the instance
of Delphi, on the other hand, programs are compiled and
linked into true machine code, thus yielding standalone
executable programs; no runtime interpreter is needed.

To facilitate software development, it is highly desirable
to reuse software components or modules—ones which have
been tested and debugged. In form-based, visual develop-
ment environments in particular, there exists a high degree
of functionality which is duplicated from one project to
another. Often, however, the core functionality must be
modified. Even if substantial modifications are not dictated
by system design, one nevertheless still must make substan-
tial modifications in order to adapt the functionality to a new
project. Today, programmers typically cut and paste from
one project to another. The approach is problematic, how-
ever. If one desires to make a core change to the underlying
functionality, one is required to go to each individual project
to which the code has been copied and manually enter those
modifications. There is no mechanism to propagate such a
change among projects.

These problems are compounded by the use of forms in
projects. Each form in a project typically includes a form
initial state, which exists in addition to the code. A difficulty
arises in how to propagate a change from the base form to
projects having dependent forms. Another problem which
arises with the current approach to copying forms among
projects is that of versioning. Here, as each form (and its
code) is propagated from one project to another, it often
undergoes some modification. Since a single base form is
not maintained from which dependent forms propagate, a
proliferation of the form occurs which leads to increased
difficulty in managing the development process.

There has been some effort to address these problems with
the use of “form inheritance.” Current form inheritance



