5,499,365

15

It is provided for open_ allowed and update_allowed
so that they can redirect the decision to the version
selection object.

19. vso_open: This method verifies that the version
selection object allows subobjects it controls to be
viewed by the user.

20. vso__update: This method verifies that the version
selection object allows subobjects it controls to be
updated by the user.

The find__object method (defined on EKNAA201) is used
to find objects for cross object verifications. Given the
source logical key and source sequence, and the target
logical key, which may be in a different complex object
structure or perspective, it determines the “best” version of
the object matching the target key to get, and retrieves it. A
class reference to the type of object desired is also passed in,
so that find methods can be sent to it. In EKNAA201, this
method uses the passed sequence number and the new
logical key, and invokes the find_applicable method. In
EKNAA300, it is specialized to make decisions based on the
perspective differences indicated by the old key and new
key, and the type of decision, which is determined by the
status__type method.

The following decision patterns are supported:

1. DECISION “A”: The passed sequence number is
globally valid for all complex objects in the application. The
data should be selected using the new key, the passed
sequence, and find_ applicable.

2. DECISION “B”: The passed sequence number is only
valid within the scope of the complex object identified by the
old key. However, the name of the associated version,
identified by the version selection object, makes sense
across other complex objects. If there is a version selection
object with matching name on the complex identified by the
new key, use its sequence number, and the find_ applicable
method, to select data for the new key. Otherwise, find the
version selection object which is the best match by status
(and possible effectivity) and use find__applicable.

3. DECISION “C”: The passed sequence number is only
valid within the scope of the complex object identified by the
old key. However, the name of the associated version,
identified by the version selection object, makes sense
across other complex objects. If there is a version selection
object with matching name on the complex identified by the
new key, use its sequence number, and the find__inserted__
by method, to select data for the new key. If the data is not
directly affected by the version selection object, or there is
no version selection object, find the version selection object
which is the best match by status, (and possibly effectivity)
and use find_applicable.

4. DECISION “D”: The passed sequence number is only
valid within the scope of the complex object identified by the
old key. As an additional complication, the new key iden-
tifies a different perspective. The name of the associated
version, identified by the version selection object, makes
sense across other complex objects in the perspective asso-
ciated to the old key (but not necessarily in the perspective
indicated by the new key). If there is a version selection
object with matching name on the complex object identified
by the new key, but in the perspective identified by the old
key, use its sequence number, and the find_inserted by
method, to select data for the new key. This also requires that
the new key be modified to select data in the perspective
indicated by the old key. If the data is not directly affected
by the version selection object, or .there is no version
selection object, find the version selection object which is
the best match by status (and possibly effectivity), for the

10

20

25

30

35

40

45

50

55

60

65

16

complex object identified by new key in its perspective, and
use find__ applicable.

5. DECISION “E”: The passed sequence number is only
valid within the scope of the complex object identified by the
old key. The version name is not of any significance across
complex objects. Find the version selection object which is
the best match by status (and possibly effectivity), for the
complex object identified by new key in its perspective, and
use find__applicable.

The presentation of version controlled objects is a spe-
cialization of the presentation of complex objects. The initial
selection panel of lists of complex objects will also include
version selection for those objects. This may be done by
including user version selection criteria on the selection
popup which precedes the list panel, or by having the list
panel show several versions of the same complex object.
FIG. 18 illustrates an example using the purchase order
complex object. A list of purchase orders would be selected
from a main menu panel. The selection popup restricts the
purchase orders that appear in the list. In this case, several
versions of the same complex object appear in the list. Note
that information about the version selection, in this case a
version selection object for version 2, is included in the ruler
list passed to the initial parts panel. This version information
becomes part of the focal point data for all related panels,
and the version selection object is included in all subsequent
ruler lists.

Complex object support provides generic support for
using stream and find methods to open list and data entry
panels from the parts panel. These methods are further
refined here to make use of the version control information
contained in the ruler list. The ruler_seq method on the
version control metaclass is used to get the sequence number
associated to the version. This is then used to find the objects
applicable at that version (either one or a stream).

The change method in EKNAA202 allows an informal
version to be established based on data in a formalized
version. The update_allowed method in EKNAA202,
EKNAA201 and EKNAA300 is used to block updates using
a formal version. The promote method in EKNAA202 is
used to promote a version from informal to formal status.
The promote verifications can be used as a part of the
approval process. The undo method in EKNAA202 can be
used to remove the affect of a version which is not approved.

The use of insert and extract sequence numbers to select
data to be presented at a particular version means the same
data may be applicable at many different versions. The
change method in EKNAA202 will create a new version of
a simple object when that version actually changes the data
in the simple object. Other simple objects belonging to the
same complex object will not be affected. It may happen that
an object is not directly affected by a version, but its
subobjects are. The selection of objects for complex objects
actions such as delete, promote and undo is adjusted for this,
through the use of the “delete_at” and “affected_at”
streams.

In the drawings and specification, there have been dis-
closed typical preferred embodiments of _the invention and,
although specific terms are employed, they are used in a
generic and descriptive sense only and not for purposes of
limitation, the scope of the invention being set forth in the
following claims.

That which is claimed:

1. A system for controlling versions of selected objects in
an object oriented computing system on a computing plat-
form, each object including an object frame containing data
attributes and at least one object method for performing



