US 7,222,265 Bl

13
lalnvokeArgs optional, STRING sPropListName
optional, BOOLEAN bReturnDynamic optional)

The complete code for the function listed in the file
entitled sqfuncs.inc, which is located on the Computer
Program Listing Appendix disc. SQ_GetProperties takes six
arguments. The first argument, wParent, is the identifier of
the window for which to capture verification data. The
second argument, sPropSetFile, is the name of the file that
contains the names of the properties to capture for each class
of object in the application under test. The third argument,
laInvokeArgs, is a list of arguments to pass to the invoke
method of the parent window. The forth argument,
sPropListName is the name of the property set within the file
sPropSetFile to use for the current window being captured.
The last argument, bReturnDynamic, is a BOOLEAN which
specifies whether to capture properties for child objects of
wParent that have not been declared.

SQ_GetProperties calls the invoke method of the window
specified by the wParent argument. It accesses the property
set stored in sPropListName in the file specified by
sPropSetFile. This property set provides the list of properties
to capture for each object class. An example of a property set
file is shown in FIG. 14.

Using this property set, SQ_GetProperties would capture
the caption of a BrowserChild, the caption of a WebPage, the
state of a Checkbox, etc. For each child object of wParent,
SQ_GetProperties captures the properties and stores them in
a file where they can be copied by the user into the
declaration of the window being tested.

The automated software test system also includes a smoke
test package, which contains a specialized smoke test engine
and functions that allow users to build smoke tests for
client-server and web based applications without having to
write any scripting code. The smoke test package can be
implemented using the following prototype for the
SQ_SmokeTest function:

testcase SQ_SmokeTest (WINDOW wWindowTo Verify,

LIST OF ANYTYPE laArgs optional)

The complete code for the function listed in the file
entitled sqfuncs.inc, which is located on the Computer
Program Listing Appendix disc. SQ_SmokeTest takes two
arguments. The first argument, wWindowToVerify, is the
name of the window object to test. The second argument,
laArgs, is a list of arguments to pass to the invoke method
of the window object to test. The smoke test performs three
tasks. It invokes the window to be tested by calling its
invoke method (step 120), calls the result capture function
(SQ_VerifyProperties—step 122) and then calls the window
object’s close method if it is defined (step 124). The smoke
test can be called from a test plan, main function or any other
test case driver where a list of windows to test can be
specified.

To build a smoke test, the user provides only simple
invoke and close methods and expected results, all of which
can be recorded. The user begins by opening a smoke test
template and locates a line that includes the words “List of
Windows to be included in the smoketest”. Under that
heading, the user lists the names of the windows to be tested.
The user then begins to create invoke methods using the
SilkTest record declarations feature to capture the window
declarations for each window to be included in the smoke
test. He or she can then write or record an invoke method for
each window. Some invoke methods require only a single
4Test statement. For example:

VOID Invoke () MyApp.File.Open.Pick( ) return

Other invoke methods require data to be input to the
application to create a context for invoking a window. To

25

30

40

45

55

14

complete this step, the smoke test package includes a
function called SQ_InputFormData. It is provided so that no
additional 4Test code needs to be written to create the
application context. An example of an Invoke method using
SQ_InputFormData follows.

LIST OF FIELD_DATA 1fdSueSmith={. . . }{*“Name”,
“Susan Smith”}{*“Address”, {10 Main Street”, “NYC,
NY”, “02233”} }H{*“AgeGroup”, “34-39”}{“NewUser”,
TRUE}{“Submit”, NULL}

VOID Invoke ( ) MyApp.File.Open.Pick( ) SQ_Input-
FormData (this, IfdSueSmith) return

The user then creates close methods. Some windows will
not require a close method because the built-in 4Test close
method may suffice. If closing a window does require a
custom close method, the user can use the same steps as
described above to write or record one. The datasets used by
the smoke test package for expected results are recorded
using SilkTest’s verify window.

The present invention has now been described in connec-
tion with a number of specific embodiments thereof. How-
ever, numerous modifications which are contemplated as
falling within the scope of the present invention should now
be apparent to those skilled in the art. It is therefore intended
that the scope of the present invention be limited only by the
scope of the claims appended hereto. In addition, the order
of presentation of the claims should not be construed to limit
the scope of any particular term in the claims.

What is claimed is:

1. An automated software testing method, comprising the
steps of:

receiving a user-created stimulus data set including series

of pairs that each include a user interface object iden-
tifier and a desired action identifier for that object,
wherein the pairs are for testing user interface objects
of a software application under test, identified by the
identifiers in the data set,

automatically converting the data set received in the step

of receiving into a series of test instructions for the user
interface objects, and

wherein the set of test instructions is operative to be run

against the user interface objects of the software appli-
cation under test.

2. The method of claim 1 wherein the step of receiving a
data set receives a stimulus data set that includes a series of
pairs that each include a software object identifier and a
desired input value for that object.

3. The method of claim 1 further including a step of
automatically generating the data set based on a state of the
application under test.

4. The method of claim 3 wherein the step of automati-
cally generating generates a stimulus data set by acquiring
information submitted to the application by a user.

5. The method of claim 4 further including a step of
acquiring a response data set based on the interaction with
the user.

6. The method of claim 3 wherein the step of automati-
cally generating generates a response data set by detecting
responses from a state of the application.

7. The method of claim 1 wherein the step of automati-
cally converting determines methods to generate based on
object class and data type.

8. The method of claim 1 further including a step of
providing a data set template to the user to fill in before the
step of receiving the data set.

9. The method of claim 1 further including a step of
prescribing a four-phase model on a test that includes the



