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deconvolution algorithms can be used to remove it as best as
possible. For images, this degradation could be caused by
motion blur, a partially blocked aperture, or an improperly
focused lens system. The blur function d(x, y), also known
as a point spread function (PSF), is representative of how a
distant point of light travels through the optical system. [1]
The mathematical representation of the blurred image g(x, y)
is a convolution

@

where w(X, y) is a noise term, and * denotes the two-
dimensional convolution. [ 1] The objective is to find the best
estimate of {(x, y) from the noisy blurred image g(x, y) when
d(x, y) is unknown. This relationship is simplified by trans-
ferring both sides of Equation 1 into frequency space via
application of a Fourier transform. [9] This changes the
convolution to multiplication, yielding

80 y)=flx, y)*d(x, y)+w(x, y)

G, v)=F(u, v)D(u, v)+W(a, v) @

where u and v are the coordinates of frequency space, and
the capital letters represent the images in Fourier space.
(Although one could achieve similar results with other
transforms, the Fourier transform is the most common.) For
the following discussion, I will assume noise is negligible.

The term ‘deconvolution’ is used to describe a process
that removes the PSF from the image. There exists a large
assortment of deconvolution algorithms. [1] The inverse
filter is the most simple. The solution is

Gu, v)
D{u, v)’

Fu,v) = ®

However, in most cases, the Fourier transform of the PSF
D(u,v), also referred to as the optical transfer function
(OTF), contains values that are very small. This results in a
restored image f(x, y) that is dominated by noise.

To compensate for this, a constant is added to the
denominator,

Gu, v)D = (u, v)
D@, P +K

Fu,v) = @

which is known as the pseudo-inverse filter (PIF). [1] The
parameter K is typically chosen by trial and error. A smaller
value increases the restored resolution, but also increases the
noise. If the parameter is set too high, the image will not
have changed. This filter is easy to employ and works well
with most images.

If a least-squares estimation is applied to Equation 2, the
result is

G(u, VD= (u, v) (&)

Flu,v)= —————F—
DG, P+ —
s

where O, is the power spectral density (PSD) of the image
noise, and oy is the PSD of F(u, v). (The PSD of a function
A(u, v) is defined as S, (v) |A(u, v)|*/NM where N and M are
the dimensions of the image.) Equation 5 is known as the
Wiener filter [10, 11, 12], named after Norbert Wiener.
Since, F(u,v) is not known in empirical situations, og must
be approximated.

There exists many other algorithms that are capable of
producing deconvolutions when the PSF is known. Some of
these are described in reference [2]. The application of these
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methods is typically narrow in scope, producing good results
within certain restrictions.

These algorithms require knowledge of the PSF to per-
form. However, in many situations the PSF is not measur-
able or cannot be easily modeled. To overcome this, a range
of solutions has been developed known as blind deconvo-
lution algorithms. Blind deconvolution is a general term
describing techniques that remove aberrations caused by
some unwanted low-pass filtering technique where the PSF
is not determined. Blind deconvolution techniques can be
either iterative [4, 5, 6, 7] or non-iterative [8, 13]. Iterative
techniques, which comprise of the majority of blind decon-
volution techniques, are based on equations that require
multiple applications. After many iterations, the program
converges on a solution if the parameters are set correctly.
As such, they generally require a significant amount of
computation and can be difficult to implement. [13] Often,
both classes require that at least a certain amount of infor-
mation about the degradation be known.

An optimum algorithm would then be non-iterative, easy
to implement, able to handle significant noise, and effec-
tively operate on a large class of images. To the best of my
knowledge, SeDDaRA is the first algorithm to meet such
requirements.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a flowchart showing the primary steps for the
extraction of the filter function and the deconvolution of a
data set.

FIG. 2A is an image of the planet Saturn, taken by the
Hubble telescope.

FIG. 2B is the Fourier transform of the image. FIG. 2C
shows the transform after the phase information is
discarded, and a smoothing function applied.

FIG. 2D is the deconvolution of the image using the
extracted point spread function, shown in FIG. 2E.

FIG. 3A was taken from the space probe Galileo of the
surface of the moon Io of Jupiter. FIG. 3B shows the
restoration result after applying the algorithm with a
frequency-dependent .

FIG. 4A was a photograph taken by a standard camera and
digitized.

FIG. 4B is the restoration of the image using the SeD-
DaRA process.

FIG. 5A shows an ultrasound waveform that traveled
through a centimeter of air and its restoration. FIG. 5B
shows the frequency spectra of the two waves.

SeDDaRA THEORY

General Formulation

The theoretical basis for the technique is still being
studied. Although this work continues, a basic understand-
ing has been established. Essentially, the process begins with
Equation 2 where only G(u, v) is known. Using this process,
D(u, v) is estimated and F(u, v) is found using a deconvo-
lution algorithm. So, as a pure analytic calculation, there is
one equation and two unknowns, and the process finds both.
Mathematically this is impossible. In order for a blind
deconvolution technique to work, some information about
the either the original data or the PSF must be known.

Instead of estimating either function, SeDDaRA assumes
that there is a relationship between the smoothed magnitude
of the truth image and the PSF represented as

D', V)=KpS{F (@, )} O



