5,787,262

31

object 114, it is unnecessary to maintain copy 98 as attached
to conflict object 118. This is because received copy 110
contains all changes in. and supersedes, copy 98. Applying
the process illustrated in FIG. 5, when attached object B14
is compared to the predecessor change list of object 110. we
see that B14 exists as an entry in the predecessor change of
copy 110. The flow diagram of FIG. 5 indicates that in such
a situation, attached object B14 is deleted. When object D9
(copy 110) is compared to the predecessor change list of
object 118, D9 is greater than D4. so D9 will be attached to
the created conflict object 114. Thus, in conflict object 114,
copy 110 has replaced attached copy 98. This makes intui-
tive sense because copy 98 was in conflict with conflict
object 118 so copy 98 must contain changes not found in
conflict object 118 or any of its attached objects. If this were
not the case, copy 98 would not be in conflict with object
114.

Finally, examining the events on replica node A, again it
will be seen that an identical conflict object is ultimately
created. When replica node A receives copy 98. the conflict
resolution process. illustrated by conflict resolution block
120 will recognize the conflict between copy 96 and copy
98. This is the same conflict recognized by replica node B
and described previously. Conflict resolution block 120 will,
therefore, resolve the conflict in the same way as replica
node B and produce conflict object 118.

When copy 110 is received, the conflict resolution
process, again illustrated by conflict resolution block 120,
will recognize the conflict between copy 110 and conflict
object 118. This conflict was also previously recognized by
replica node B. Conflict resolution block 120 will resolve the
conflict between conflict object 118 and copy 110 in the
same way that replica node B resolved the conflict. As a
result, conflict object 114 is created.

This example illustrates how multi-way conflicts among
several nodes are resolved in the same manner regardless of
the order that replication messages are received. Thus. the
order of conflict resolution is unimportant and all replica
nodes on the replica list for a particular replica will even-
tually identify and resolve conflicts in such a manner as to
create the same conflict object. As previously described, any
or all of the replica nodes can be configured to initiate final
conflict resolution.

In summary. the present invention provides a system and
method for resolving conflicts between different versions of
the same data object replicated across an enterprise. The
conflict resolution process is distributed in nature such that
conflicts will be identified and resolved in exactly the same
manner at each replica node regardless of the order that data
is received. Furthermore. the conflict resolution process of
the present invention can identify and resolve conflicts with
little or no increased message traffic. The conflict resolution
process of the present invention can also be adapted to work
with any resolution process.

The present invention may be embodied in other specific
forms without departing from its spirit or essential charac-
teristics. The described embodiments are to be considered in
all respects only as illustrated and not restrictive. The scope
of the invention is, therefore, indicated by the appended
claims rather than by the foregoing description. All changes
which come within the meaning and range of equivalency of
the claims are to be embraced within their scope.

What is claimed and desired to be secured by United
States Letters Patent is:

1. In a network comprising a plurality of nodes each of
which can make changes to local copies of a replica object
and each of which transmit any changes made to other nodes

10

15

20

25

30

35

45

50

55

65

32

in the network, a method for each node (1) to independently
detect conflicts that arise when two or more copies of the
replica object are changed to introduce conflicts and (2) to
take steps to resolve the conflicts without interrupting nor-
mal operation of the network the method comprising the
steps of:

keeping at a local node a local copy of the replica object

and a local change history comprising globally unique
change numbers that together identify all changes that
have been made to said local copy, whether at said local
node or at other nodes in the network;

receiving. from another node in the network. at least one

message comprising a received copy the replica object
and a received change history;

detecting if a conflict exists between said received copy

and said local copy and taking steps to resolve any
detected conflict without interrupting normal operation
of the network by performing at least the steps of:
comparing said received change history with said local
change history and declaring a conflict only if one of
either said received change history or said local
change history does not contain all the changes of the
other;
if a conflict is declared then creating a new copy of the
replica object that can be changed and transmitted to
other replica nodes without interrupting normal
operation of the network by performing at least the
steps of:
executing a predetermined sequence of steps that
deterministically select one of either said received
copy or said local copy as a winner copy; and
attaching the copy not selected as the winner copy to
the winner copy; and
if a conflict is not declared. then replacing said local
copy with said received copy if said received copy
contains all changes of said local copy. otherwise
discarding said received copy and retaining said
local copy.

2. A method for discovering and resolving conflicts as
recited in claim 1 wherein each node in the network has a
unique ID and wherein the local copy of the replica object
and the received copy of the replica object cach have a time
stamp and wherein the predefined sequence of steps com-
prises:

selecting, as the winner copy, the copy of the object with

the later time stamp; and

selecting, as the winner copy. the copy of the object which

was changed by the node with the largest unique ID. if
the time stamps of the received copy of the replica
object and the local copy of the replica object are the
same.

3. A method for discovering and resolving conflicts as
recited in claim 1 further comprising the step of attaching the
winner copy to itself.

4. A method for discovering and resolving conflicts as
recited in claim 1 wherein said change history comprises a
list of globally unique IDs which identify the latest change
made by nodes in the network which have changed the local
copy of the replica object.

5. A method for discovering and resolving conflicts as
recited in claim 1 further comprising the step of notifying
one or more users of the conflict.

6. A method for discovering and resolving conflicts as
recited in claim 1 wherein the replica object comprises a
plurality of data set properties having at least one time stamp
indicating the time that said plurality of data set properties
were last modified.



