US 6,446,260 B1

15

was stored there by the OS installation module 62 and, in
step 156 installs using the parameters from the updated
answer file 66. As noted above, because the OS being
installed is programmatically designed to use an answer file
during installation, steps 154 and 156 are built into the OS
installation program 68. Also as noted above, details of the
use and operation of setup programs for Windows®NT,
Windows®95 and Windows®98 is provided in, respectively,
“Microsoft® Windows®NT Workstation Operating System
Deployment Guide,” “Microsoft® Windows®95 Resource
Kit,” and “Microsoft® Windows®98 Resource Kit,” each of
which has been incorporated by reference.

As detailed above, the present invention automatically
generates a GUI whereby a CM-user can quickly and easily
select a group of personalization parameters with which an
OS can be configured. OS installation module 54 then edits
generic answer file 64 with personalization parameters from
desktop profiles file 34 to create an updated answer file 66
that includes the selected personalization parameters. In this
way, the present invention advantageously allows a system
administrator to deploy personalized operating systems to a
plurality of workstations 44 on a network without having to
manually edit an answer file for each deployment. With the
present invention, the system administrator only needs to
create one generic answer file 64 for each type of OS which
may be deployed and a desktop profile file for each CM-user
who will be deploying an OS. Because there are fewer files
to manually edit, this can advantageously simplify and make
more reliable the process of OS deployment into networked
workstations. Further, it can reduce the time necessary to
accomplish such deployment.

As noted above, not all OS personalization parameters
can be stored in, and then read from, an answer file.
Parameters that cannot be stored in an answer file can
include end-user login name and end-user password. As
such, the present invention includes a second editing module
referred to as post-OS installation module 90, which is
downloaded to workstation 36 after setup program 68 has
run to install the operating system. Post-OS installation
module 90 can edit a plurality of operating system applica-
tion programming interfaces (“APIs”) to include non-
preinstallation configurable personalization parameters. An
API is a routine that a configuration manager (or any other
program) can use to request an operating system to perform
lower-level services.

As shown in FIG. 9, step 158, which shows the steps
completed by post-OS installation module 90, post-OS
installation module 90 detects from OS setup program 68
when OS setup is complete. Then, in step 160, post-OS
installation module 90 reads continue.ini file 72 for the
values of comprofiles environment variable 95 and select-
edcomp environment variable 97. In step 162, post-OS
installation module 90 reads the desktop profile file 34
designated in comprofiles environment variable 95 for keys
indicating personalization parameters to be configured at the
post-OS install stage. Post OS install module 90 is prepro-
grammed to recognize such keys. For example, for the
end-user login name, the post-OS installation module 90
finds the “LoginID” key and retrieves its value. For the
end-user password, post OS-installation module 90 finds the
“InitialPassword” key and retrieves its value.

Post-OS installation module 90 then places these retrieved
values in arguments of APIs. These APIs are essentially lines
of code in post-OS installation module 90. For example, to
configure an end-user login name for Windows®NT,
Windows®95, and Windows®98 operating systems, the
lines of code appear as follows:

10

15

20

25

30

35

40

45

50

55

60

65

16

USER__INFO__ 2 Userlnfo_ 2;

Userlnfo_ 2.useri2 name=p_ pusUserName;

NetUserAdd(p__pusWorkstationName, 1, &Userlnfo_ 2,

&Error);
Where:

p__pusUserName=LoginID and

p__pusWorkstationName=the computer name of the

workstation being configured

The “p_ pusUserName” portion of the API is the argu-
ment which is replaced with the value of the “LoginID” key
in the selected desktop profile. As such, to edit the end-user
login name API, post-OS install module 90 reads desktop
profile 39 and retrieves the value for the key “LoginID” and
places it in the “p_pusUserName” location in the API.
Specifically, if the value for “LoginIlD” in the selected
desktop profile 39 was “JSmith”, then post-OS installation
module would place “JSmith” in the argument of the API
call to appear as “Userlnfor_ 2.usri2_name=JSmith.” The
computer name of the workstation being personalized
(which was already configured using the answer file as
described above) is also included in the API to associate the
end-user login ID with the correct workstation. The Post-OS
installation module 90 then executes the API which auto-
matically configures the installed OS to have an end-user
login name of JSmith. As noted in the background section,
the use of and syntax for Microsoft® operating system APIs
is detailed in “Microsoft® Visual C++ 6.0 Reference
Library”, Microsoft® Press, 1998.

By automatically editing APIs to include parameters from
a desktop profile, the present invention advantageously
allows a CM-user to deploy a OS in a workstation without
the need to manually enter values for such parameters for
each workstation. This can simplify and save time is the OS
deployment process and make the process more reliable.

As described above with reference to FIGS. 8 and 9, it is
possible for the present invention to update and use an
answer file in configuration of an operating system.
However, it is also within the scope of the present invention
to use only the post-OS installation method and apparatus
described above for automated OS personalization. That is,
the post-OS install module 90 can read all the personaliza-
tion parameters designated by the comprofile environment
variable 95 and selectedcomp environment variable 97, and
place these parameters in the appropriate API calls. In this
way, the steps described above involving use of an answer
file for operating system configuration could advantageously
be eliminated.

Having described the invention in terms of a preferred
embodiment, it will be recognized by those skilled in the art
that various types of general purpose computer hardware
may be substituted for the configuration described above to
achieve an equivalent result.

What is claimed is:

1. A method for providing personalization parameters for
an automated operating system installation, comprising:

displaying personalization parameters on a user interface;

allowing a user to select a plurality of said personalization
parameters; and

automatically editing an operating system configuration

file in response to said user selection, said configuration
file edited to include at least a first portion of said
selected plurality of personalization parameters.

2. The method of claim 1, further comprising:

accessing said operating system configuration file; and

automatically configuring said operating system with said
personalization parameters in said operating system
configuration file.



