5,692,157

17

In this example, database program 1701 provides the
ability to insert an arbitrary object (here a linked spreadsheet
object) and to set or update its contents with native data
through two commands, “Insert Object,” and “Update
Object Contents,” found on the “Edit” menu of the database
program. When the user selects the “Insert Object”
command, the database program 1701 presents the user with
a list of the classes of objects defined in the persistent global
registry. Once the user has selected the type of object to
create and specifies whether the object should be linked or
embedded, the database program 1701 creates a default
object of that CLASS__ID using the standard client library
routine, Create_ Object. In our example, a linked default
spreadshect object is created.

To initially set the data, or at any later time when the user
wishes to update the data, the user selects the command
“Update Object Contents” When “Update Object Contents”
is invoked on a selected object, the database program
presents a form for the user to fill in with database queries
specifying the data to be placed in the selected object. Once
the user has completed this form, the database program 1701
causes the data of the object to be changed by invoking the
client library routine Send_ Data. The range in the manag-
er's spreadsheet 1706 is updated to refiect the scheduling
data that was specified in the “Update Object Contents”
form.

The spreadsheet program 1705 is used by the user’s
manager to view the scheduling data for the entire manu-
facturing project in the manager’s spreadsheet 1706. This
spreadsheet contains the ranges of data that were actually
created by the component project teams as described above.
Whenever each project team chooses to update the manag-
er’s spreadsheet using Update Object Contents, the manager
will have an updated synopsis of project progress.

FIG. 18 shows the flow diagram for function Update__
Object__Contents. This function allows the user to specify
which data is to be sent to the object. In a preferred
embodiment, this function is passed an object that is to have
its data set. The function determines the object class and
retricves from the persistent registry which data formats the
object supports for setting data. The function determines if
it can support any of these data formats (e.g., standard
spreadsheet format). If it can, then the function allows the
user to specify which data from the database is to be sent to
the object. In step 1801, the function displays a standard
input selection form for a format that the object server
supports (e.g., a spreadsheet). In step 1802, the function
inputs the user input selections. In step 1804, the function
retrieves the data from the database as indicated by the user
selections. In step 1805, the function puts the data in a
format that is compatible with the object server. In step
1806, the function invokes the function Send__Data to send
the formatted data to the object. In step 1807, if function
Send_Data returns an OBJ_OK message, the function
returns, else the function continues as step 1808. In step
1808 through 1813, the function waits for the asynchronous
invocation of function Send_Data to complete and the
function returns. This is the same process as is described in
steps 1110 through 1115 of FIG. 11.

FIG. 19 shows the flow diagram for the client library
routine Send__Data and the corresponding server processing
required. The Send__Data function checks to ensure the
server for the selected object can set the object data in the
requested format and sends the data to the server if it can.
The function Send_Data has three input parameters: a
pointer to the selected object data structure, a handle to the
data, and the requested format. In step 1901, the function

10

15

20

25

30

35

45

50

55

65

18

determines the object CLASS_ID from the selected data
structure. In step 1902, if the input format is registered in the
persistent global registry for the object class, then the
function continues at step 1903, otherwise the function
returns ERROR_FORMAT. In step 1903, the function
checks in the registry to see if there is an object handler
defined for the object there is none, the function continues
at step 1906, otherwise it continues at step 1904. In step
1904, the function invokes the object handler to satisfy the
send request. In step 1905, if the handler can satisfy the
request (it returned OBJ_OK) then the function returns
OBJ_OK. If the handler cannot satisfy the request, the
program continues at step 1906. In step 1906. the function
determines the location of the server for the object class. In
step 1907, the function determines whether the server is
connected (open). If the server is not open, the function
returns ERROR_NOT__OPEN, otherwise, it continues at
step 1908. In step 1908, the function checks to see if the
server is busy and, if it is, it returns OBJ_BUSY, otherwise
it continues at step 1909. In step 1909, the function sends a
SEND__DATA message to the server asynchronously, pass-
ing it a handle to the data, the requested format, and a pointer
to the object. Finally, the function returns OBJ_WAIT__
FOR__RELEASE to the client application so that the client
knows it must wait for an asynchronous response.

On the server side, when the server library receives the
SEND__DATA message, it invokes the callback routine of
the server application in step 1910 passing it a OBJ_
SENT__DATA notification, a handle to the data, the
requested format, and the handle to the object. If the server
application successfully processes the request, the callback
routine will return an OBJ_OK value to the server library,
otherwise the callback will return an error value. In step
1911, the server library sends the message SEND__DATA __
DONE to the client library with the value returned by the
server application.

Then, when the client library asynchronously receives the
SEND_DATA__DONE message in its message handling
routine (see FIG. 6A), in step 604, the library invokes the
callback routine of the client application passing it an
OBJ_RELEASE notification. At this point, step 1810 (see
FIG. 18) of the client application function Update_ Object__
Contents will complete.

Although the present invention has been described in
terms of a preferred embodiment, it is not intended that the
invention be limited to his embodiment. Modifications
within the spirit of the invention will be apparent to those
skilled in the art. The scope of the present invention is
defined by the claims which follow.

What is claimed is:

1. A method in a computer system of transferring data
between a client and a server, the computer system having
a persistent global registry for storing data format
information, the method comprising the steps of:

under control of the computer system,

storing in the persistent global registry a plurality of
data formats that the server supports;

under exclusive control of the client and without arbitra-

tion from an external process,

determining from the persistent global registry at least
one stored data format that the server supports with-
out accessing the server; and

selecting a determined data format;

under control of the client,

sending a request to the server to supply data in the
selected data format;

under control of the server,



