US 7,461,353 B2

19

and client-side processing, users are enabled to view the
entire content of billions of existing Web pages using hand-
held devices in a simple and reasonable way.

In one embodiment, the client software may be a plug-into
a Web browser, such as Netscape Navigator or Microsoft
Internet Explorer. Such a plug-in might have the browser
download the data and display it in a sub-window of the
browser. Alternatively, the client software may be a Java
applet running in a browser. As another option, the client
software may be a stand-alone program that interfaces with
the proxy server or proxy software directly. The client soft-
ware may bypass the proxy when requesting information that
won’t be translated to vectors, such as bitmaps.

With reference to FIG. 6, client-side processing proceeds
in the following manner. In a block 160, the vector represen-
tation data (i.e., vectorized HTML content and compressed
bitmap content) for the web page is gathered at the client.
Typically, this data will be stored in a cache at the client as it
is being received, and the client simply retrieved the data from
the cache. In a block 162, a display list of vectors is built. This
process is well known in the CAD arts, and is enabling rapid
zooming of vector-based objects. In a block 164, user select-
able scale and offset (pan) values are determined. Based on
various user interactions with the user-interface of the client,
the user is enabled to control the zoom (size) and offset of the
rendered page. For example, suppose the user provides zoom
and offset inputs to produce a rendered page 210E, as shown
in FIG. 4E. In this rendered page, the original origin is now off
of'the screen (the page image is shifted upward and toward the
left—see FIG. 4F), and the view has been scaled approxi-
mately 1.3 times.

Next, in a block 166, the vectors and boundary boxes are
processed based on the scale and offset, and a bounding box
defining the limits of the display content is determined. The
results of'this step are shown in FIG. 4F, while FIG. 4G shows
specific details one how the vectors and bounding boxes
corresponding to image objects 250B and 250B (now 250B'
and 252B', respectively) are processed. Logically, there are
generally two ways to scale and offset the rendered content. In
one embodiment, vectors and bounding boxes are mapped to
a virtual display area in memory that has much greater reso-
Iution (e.g., 100,000x100,000 pixels) than any real display,
and a virtual display limit bounding box is scaled and moved
around over the virtual display area. Accordingly, during
subsequent processing described below, objects falling
within the display bounding box are rendered by reducing the
scaling of those objects in the virtual display to how the
objects will appear on the client device display relative to the
virtual display bounding box. In the alternate, a fixed refer-
ence frame corresponding to the display resolution of the
client device screen is maintained, wherein all vectors and
bounding boxes are scaled and offset relative to the fixed
reference frame. Each scheme has its advantages and disad-
vantages. One advantage of the second method is that the
display bounding box is always maintained to have a size that
matches the resolution of the content display area on the client
device.

As shown in FIG. 4G, respective offsets in X and Y, (-AX
and —AY inthe Figure) are applied to the starting point of each
of the vectors. The vectors are then scaled by a scale factor
“SFE.”” The results of the new vectors are depicted by vectors
250D" and 252D". This produces a new datum for each
object’s bounding box that is relative to rendered page datum
262, which remains fixed. As discussed above, only a portion
of'the display screen will actually be used to display content
(as defined by a display limit bounding box 266 in this
embodiment), while other portions of the screen, including
box 264, will comprise a generally fixed-size user interface.

40

45

20

Accordingly, rendered page datum 262 is not located at the
upper lefthand corner of the display area, although it possibly
could be located at this point when either the current user
interface is inactive (i.e., the display portion of the user inter-
face is temporary disabled) or the user interface is contained
in other portions of the display.

This foregoing process establishes a starting point (the new
datum) for where the content in each object’s bounding box
will be rendered. At this point, each object’s bounding box is
then drawn from its new datum using the scaling factor. For
example, in the original web page 210D (FIG. 4D), bounding
box 250B had an X-axes datum of 150 pixels, a Y-axis datum
of 225 pixels, and a height and width of 180x350 pixels. In
contrast, after being offset and scaled, bounding box 250B'
has an X-axis datum of 150*% SF-AX, a Y-axis datum of
225%SF-AY, and a height and width of 180*SFx350*SF.

Returning to the flowchart of FIG. 6, once the vectors and
bounding boxes are offset and scaled, content corresponding
to objects having at least a portion of their bounding boxes
falling within the display limit bounding box is retrieved from
the client device’s display list in a block 168. For examples, as
shown in FIG. 4F, content corresponding to all of the objects
except for those falling entirely outside of display limit
bounding box 266 (objects 216, 238, 240, 242 and 244) is
retrieved from the display list. That content is then scaled in a
block 170. For image content, this comprises decompressing
and scaling the compressed bitmaps corresponding to those
images. For text content, this comprises scaling the font (i.e.,
typeface) that the text content portions of the web page are
written in the parent HTML document and any referenced
documents. There are various techniques for typeface scaling
that may be implemented here, depending on the available
resources provided by the operating system of the client
device. For example, for WINDOWS™ operating systems,
many TRUETYPE™ fonts are available, which use a com-
mon scalable definition for each font, enabling those fonts to
be scaled to just about any size. In other cases, such as current
PDA (e.g., Palm Pilots) operating systems, there is no existing
feature that supports scaling fonts. As a result, bitmapped
fonts of different font sizes and styles may be used. In addi-
tion to scaling image and text content, other types of content,
such as separator lines and borders may also be scaled by
block 170.

The process is completed in a block 172, wherein those
portions of the scaled content falling within the display limit
bounding box are rendered on the client device’s display.

As discussed above, it is foreseen that the invention will be
used with client devices having small, low resolution dis-
plays, such as PDAs and pocket PCs. Examples of various
views of an exemplary web pages obtained from the
YAHOO™ web site are shown in FIGS. 7A-B, 8A-B and
9A-B. For instance, FIG. 7A represents how the YAHOO™
home page might appear on a Palm IIlc color PDA.

In addition to directly scaling and offsetting content, the
client user-interface software for PDA’s provides additional
functionality. For instance, a user may select to view a column
(results represented in FI1G. 7B by tapping that column with a
stylus, a shown in FIG. 7A. Similarly, the user may select to
zoom in on an image by tapping the image with the stylus, as
shown in FIGS. 8 A and 8B, or select to view a paragraph in an
article by tapping on the paragraph, as shown in FIGS. 9A and
9B. It is noted that in some instances, the display of the
paragraph may be reformatted to fit the characteristics of the
display, rather than following the original format in the zoom-
out view.



