5,918,053

1

METHOD AND SYSTEM FOR DIAGRAMING
COLLABORATIONS DEDUCED FROM
SMALL TALKCODE USING A DESIGN

VIRTUAL MACHINE

RELATED INVENTION

IBM application Ser. No. 08/769,910 entitled “Method
and System for Synchronizing Code with Design”, filed
concurrently herewith on Dec. 19, 1996.

FIELD OF THE INVENTION

The present invention relates in general to computer
software, and in particular to a method and system for
diagraming collaborations deduced from Smalltalk code
using a design virtual machine.

BACKGROUND OF THE INVENTION

Software designs, much like abstract analogs (such as
maps and blueprints), are built because they are useful for
explaining, navigating, and understanding the richer under-
lying realities. With software, however, it is rare for even the
most general design of an implemented system to be either
complete or accurate. In many projects, senior programmers
brainstorm on a white board, produce the program and
produce just enough of a retrospective design to satisfy
management. In projects with formal analysis and design
stages, the design may be accurate when it is first made, but
it seldom matches the final implementation. As code is
developed it diverges from the design. These changes are
rarely transferred back to the design documents because
programmers seldom take the trouble to find and edit the
design documents.

The lack of accurate design adds dramatically to the life
cycle cost of software systems. Mismatches between design
and code slow initial development of large systems because
teams working on one portion of the system rely in part upon
the design descriptions of other portions of a system. Inac-
curate design has an even more dramatic effect on mainte-
nance because maintenance done without understanding the
underlying design is time consuming and prone to error.

Design and code can neither be completely separated
from each other nor completely joined with one another.
They overlap in that both describe the same system but are
different because the intended audience of those descriptions
are quite different. Design communicates the intent of the
designers to other humans, while code communicates design
intent to the machine. Humans share a vast common knowl-
edge and can deal with abstractions but are weak at handling
masses of detail. The machine is not hampered by details but
is oblivious to abstraction and generality.

One prior art approach to synchronizing code and design
supposes that if programmers are unable or unwilling to
keep the code synchronized with design, perhaps program-
mers can be dispensed with and simply generate the code
from the design. In some cases, such as when an application
merely maintains a database, this approach works. However,
for general programming this approach fails for several
reasons. One of these reasons is that analysts and designers
seldom, if ever anticipate all the details encountered in the
actual coding. Programmers need to make changes that
extend or “violate” the design because they discover rela-
tionships or cases not foreseen by the designers. Removing
the programmers from the process does not impart previ-
ously unavailable omniscience to the designers.
Additionally, most real world applications contain behavior

10

15

20

25

30

35

40

45

50

55

60

65

2

that is best described with algorithmic expressions. Pro-
gramming code constructs have evolved to effectively and
efficiently express such algorithms. Calling a detailed
description of algorithmic behavior “design” simply because
it is expressed in a formalism that isn’t recognizable as
“code” does not eliminate the complexity of the behavior.

Another previously known method is the automated
extraction of object structure from code. Some tools are
available that can create more or less detailed object struc-
ture diagrams directly from C++ class definitions that con-
tain inheritance and attribute type information. Some Small-
talk systems provide similar attribute “type” information
that allows these tools to be similarly effective. Without the
attribute information, tools can only extract the inheritance
structure. This method does not actually parse and model
code other than C++ header files or Smalltalk class defini-
tions. Therefore, this approach can at best identify “has-a”
and “is-a” relationships. These relationships may imply
collaboration but this approach does not specifically identify
any of the transient collaborations that are important for
understanding design. In addition, it does not provide any
information about algorithms.

Another method is the automated deduction of design by
analyzing code execution. Collaborations implicit in Small-
talk code are difficult to deduce statically from the code and
may not be fully determined until run time. However,
Smalltalk is strongly typed at runtime so it may be deter-
mined exactly what kind of objects are participating in all
collaborations by examining the receiver and the arguments
involved in all message sends. The resulting information can
be used to specify the collaborations observed during the
execution. This method suffers from the following problems:
(1) it requires test cases to exercise the code; each of these
test cases must construct an initial state which is sometimes
elaborate; (2) the test cases themselves require careful
construction and may become obsolete as the system
changes; (3) the effort needed to construct and maintain
these test cases can be a deterrent to routine use of this
technique; and (4) full coverage by the test cases is difficult
to obtain and the degree of coverage is difficult to assess.
This undermines confidence in the resulting design. Without
full coverage, the extracted collaboration design is likely to
be incomplete in important ways. For instance, the way a
system is designed to handle the exceptional cases can be
more telling than the way it handles the common ones.

Larger-grain object oriented design involves just a hand-
ful of basic elements:

1) Object structure: diagrammatic specification of which
objects are in a model and how they are statically related,
these diagrams are referred to as Object Structure Diagrams
(OSDs);

2) CRC (Class, Responsibilities, Collaborators): short
textual description of object behavior (responsibilities) and
a list of other related classes (collaborators); and

3) Object interaction: diagrammatic and textual represen-
tation of the timing of interaction between objects in
response to a particular event or transaction within a system,
these diagrams are referred to as Object Interaction Dia-
grams (OIDs).

These three design artifacts are different perspectives
depicting how objects collaborate within an object oriented
system. These diagrams are artifacts of the design process in
that they represent the system at a level of abstraction
different from code. This design information is intended to
communicate certain details of a system and elide other
details (such as implementation in code). Design artifacts are



