4,507,752

1
IN-PLACE INDEX COMPRESSION

The present invention relates to methods of upkeep of
hierarchical indices in and by data processing systems
with particular reference to the macro operations of
compression, insertion and deletion.

BACKGROUND

It is normal for a data processing system to support
many data entities or files called for by the potential
user by identity whereas the data processing system
needs to know the address, usually in peripheral stor-
age, at which the data entity or at least the start of the
data entity is stored. Since the system allocates storage,
the system also maintains an index in which it records
the addresses at which it has stored data entities in asso-
ciation with the identities of those data items. In other
words, an index is a machine maintained mapping of
data identity onto data location. The main function
performed in relation to an index is searching and to
speed searching, hierarchical indices are normal in sys-
tems of any appreciable capacity. In a hierarchical in-
dex, there are plural sequential levels of mapping ex-
tending from an entry level or apex to an exit level or
base. Each level maps onto the next sequential level so
that the extent of the next level requiring processing
during a search is limited.

However, alteration of a hierarchical index is much
more time consuming than is alteration of the equivalent
single level index since, again in the worst case, an
alteration, always at the base level, may propagate “up-
wards” through all the levels up to and including the
apex. Conventionally, the index is not available for its
main function—searching—while it is being updated
and its integrity is not maintained, if it is not maintained
updated. Further, updating by insertion and deletion
tends to create a most irregular index structure, and it is
the function of the upkeep macro operation—compres-
sion—to restore, penodlcally, the regularity of the
index structure. Compression is the most time consum-
ing of the upkeep operations. For examples of conven-
tional hierarchical index upkeep operations, please refer
to:

U.S. Pat. No. 3,643,226

U.S. Pat. No. 3,611,316

U.S. Pat. No. 3,916,316

U.S. Pat. No. 3,651,483

UK Pat. No. 1,336,817

Ideally we would like to provide a hierarchical index
which can be searched while it is being updated. Al-
though we have not succeeded in achieving this end in
absolute terms, we have devised an index which can

(a) be searched at virtually any point during compres-
sion of the index,

(b) be updated by insertion or deletion at regularly
ocurring break points during compression of the index
and

(c) accommodate compression restart at the point at
which it was interrupted.

It is pointed out that an approach to these aims can be
achieved by duplicating the index in such a way that
one copy of the index is available for searchmg, inser-
tion and deletion; while the other copy is being com-
pressed, but this arrangement, apart from absorbing
storage space, implies that neither copy is fully main-
tained.

5

—

5

25

30

45

50

55

65

2

In the case of the present invention, there is no dupli-
cation and the single index is, in terms, fully maintained.

SUMMARY OF THE INVENTION

From one aspect the present invention provides a
method of maintaining said multi-level index by said
system comprising the steps of executing a sequence of
processing cycles wherein each cycle progresses
through the index levels in a first and then a second
direction, selectively performing at each level of the
index, while performing a processing cycle in said first
direction, a first subset of basic operation iterations,
including basic operations for duplicating the presence
ot an original parameter, and selectively performing at
each level of the index, while performing a processing
cycle in said second direction, a second subset of basic
operation iterations including basic operations for delet-
ing the original presence of said duplicated parameter.

From another aspect, the present monitor provides a
method of compressing said index by said system, by the
execution of a variable length ordered sequence of pro-
cessing cycles, each said cycle comprising a variable
length sequence of basic operation iterations, each said
iteration comprising the selective performance of basic
operations of a first subset and a non-overlapping sec-
ond subset of said basic operations of an ordered fixed
sequence of said basic operations, wherein each said full
cycle progresses through all said index levels, in a first
direction, performing said first subset of basic operation
iterations and subsequently, in a second direction, per-
forming a said second subset of said basic operation
iterations, basic operations in said first subset duplicat-
ing the presence of an original parameter, basic opera-
tions in the said second subset deleting the original
presence of the said duplicated parameter.

If in addition, in the compression method, the permit-
ted iterations are defined by an action vector table, each
vector having a vector element corresponding to each
basic operation, arranged in sequence order, effective in
relation to the contents of the moveable operating win-
dow in the index spanning three logically adjacent
blocks at one index level together with the blocks con-
taining the parent entries of the aforesaid three blocks,
the current action vector selection being determined by
the contents of the current window, it is possible to
resume compression automatically from the point at
which it was interrupted.

As far as interruption of compression for insertion or
deletion is concerned, this has to be restricted to those
points in the compression process at which the process-
ing is at rest at the base level between cycles of com-
pression.

A preferred embodiment of the present invention will
now be described twice, firstly in general functional
terms with reference to the aocompanymg drawings
and, thereafter, insofar as the main compression opera-
tion is concerned, in more detailed and specific terms.

BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings,

FIG. 1 is a diagram of an index block;

FIG. 2 is a diagram of a very simple dislocated index;

FIGS. 3 to 6 are sequential diagrams illustrating the
insertion of entries into an index;

FIGS. 7 and 8 are sequential diagrams illustrating the
deletion of entries from an index;



