US 8,619,051 B2

3

Actuator 18 may be, for example, an electromagnetic actua-
tor, an Eccentric Rotating Mass (“ERM”) in which an eccen-
tric mass is moved by a motor, a Linear Resonant Actuator
(“LRA”) in which a mass attached to a spring is driven back
and forth, or a “smart material” such as piezoelectric, electro-
active polymers or shape memory alloys. Memory 20 can be
any type of storage device, such as random access memory
(“RAM”) or read-only memory (“ROM”). Memory 20 stores
instructions executed by controller 12. Memory 20 may also
be located internal to controller 12, or any combination of
internal and external memory.

FIG. 2 is a block diagram of the system architecture of a
haptic feedback system 100 in accordance with one embodi-
ment. System 100 includes two or more applications 30 and
32 that call, via software commands, for a specific stored
haptic effect to be played. Application program interface
(“APT”) 34 interprets the software commands and outputs to
two parallel paths, one for each type of actuator. In other
embodiments, one or more paths may be implemented. In
FIG. 2, the left-side path is for a piezo actuator 50 while the
right-side path is for an LRA actuator 52.

Coupled to each path is a digitized stream envelope
(“DSE”) construct 36 which includes stored haptic effects. In
one embodiment, four different haptic effects are stored, but
any number may be stored. Each path includes a driver 38 and
40 and a service provider interface 39 and 41 that include
information on the specific type of actuator for the path. This
allows the API to be hardware/actuator independent.

Each path further includes, for each actuator, a drive signal
42 and 46 and an electrical drive circuit 44 and 48. Finally,
actuators 50 and 52 generate the vibration or other desired
haptic effect.

In one embodiment, the piezo actuator driver expects a
differential sine wave control signal. One embodiment gen-
erates a sine wave in software at a 5 kHz rate and outputs that
as a pulse width modulation (“PWM?”) signal. A simpler
control signal may be used to achieve the same feel on the
device. However, in one embodiment, the piezo circuit
requires a PWM signal with fixed frequency in the 20-50 kHz
range, whose duty cycle is expected to be updated every 200
us.

In one embodiment, there are at least 3 possible physical
configurations for the LRAs:

1. Case mounting—In this configuration, the LRAs are
mounted rigidly to the interior of the device casing. The
LRA is driven at its resonant frequency (from 175 Hz to
185 Hz), and the entire device is actuated.

2. Screen mounting—matched frequency. The screen is
floated on a suspension, mechanically isolated from the
casing, and the LR As are rigidly mounted to the screen.
The LRAs is typically driven at the LRA resonant fre-
quency, and the suspension is tuned to reinforce that
frequency.

3. Screen mounting—bi-modal. The screen is floated on a
suspension, mechanically isolated from the casing, and
the LRAs are rigidly mounted to the screen. The LRA
can be driven at the LRA resonant frequency in which
case the suspension is tuned to transmit most of the
vibration to the casing. The LRA can also be driven at the
system’s natural frequency, with the suspension tuned to
a higher frequency than the LRA’s own resonant fre-
quency (typically approx. 500 Hz). In this configuration,
the LRA can be used both as an event alerting system
(Silent/Manner mode vibration alerter) or as a touch-
screen feedback system (for button press tactile confir-
mation).

20

40

45

55

4

In one embodiment, many variants of the known Vibe-
Tonz® LRA drive circuit from Immersion Corp. can be used.
Generally, these drive circuits require one PWM at 20-50 kHz
fixed frequency, variable duty cycle, 8-bit duty cycle resolu-
tion, 50%=no output, with a fine granularity in the 20-30 kHz
range (as the carrier frequency is a multiple of the LRA drive
frequency in many designs). The circuit also requires a Gen-
eral Purpose Output (“GPO”) for AMP_ENABLE control.

Alternately, an even simpler amp circuit could be used,
because a 5 or 8 kHz output rate from the driver would allow
output of sine or square waveforms at the LRA resonant
frequency. This eliminates the need to fine-tune the PWM
frequency, as the resonant frequency would itself be encoded.

FIG. 3 is a block diagram of the software architecture in
accordance with one embodiment. One embodiment of the
architecture includes the following:

1. No custom effect playback for applications. Only pre-
defined effects (“stored haptic effects™), stored in Digi-
tized Streaming Envelope (“DSE”) constructs stored in
the driver software can be played back.

2. No real-time generation. Effect playback is based on a
pre-recorded control signal, not generated in real-time.
The control signal is computed using an effect design
tool.

3. Multiple application support. Multiple applications
could register with the API simultaneously. Supporting
multiple applications requires some form of API client
marshaling, where the API must determine whose
request is most important. Two approaches are possible:

a. Last caller wins. When multiple applications try to use
the vibration resource simultaneously, the last caller
interrupts whatever was playing before and its effect
plays.

b. Priority scheme. The API could support a concept of
high/medium/low priority on effect playback launch.
When launching an effect, the caller specifies the prior-
ity to be used. Playback succeeds when priority is equal
to or higher than the current effect’s playback priority.

4. Designed for portability. Like VibeTonz®, ANSI C only,
no dynamic memory allocation.

In one embodiment, the Driver Access Interface (“DAI”)
consists of lower-level functions that provide the bulk of the
APT functionality. In one embodiment, the DAIT is designed to
be implemented as a functional interface, which is easily
wrapped in a serial protocol. The driver is a timed loop that
executes the following commands:

1. Look at API/Driver shared memory. If playback is
scheduled, retrieve current DSE pointer from memory,
along with any other required driver/effect state infor-
mation.

2. If state is “playing effect”, decode DSE, extract PWM
value to be applied to PWM. Then write to PWM. Sleep
until next sample.

3. If state is “finished iteration check for repeat”, and if
effect is to be repeated, decrement repeat value, set up
gap timing and sleep until gap time expires.

In one embodiment, DSE construct 36 of FIG. 2 is a set of
magnitudes, or strengths, over time, for a number of effects.
The samples are stored in a lossless compact format. Files
containing DSE information use the .dse file extension.

FIG. 4 is a block diagram of the file format used in one
embodiment for the DSE construct. The DSE 1.0 Header
Block contains file format version information, number of
effects, location of the Effect Storage Block, location of the
Effect Set Name Block, and file size. The Effect Storage



