US 9,032,248 B1

1
MEMORY WRITE TRACKING FOR VIRTUAL
MACHINES

BACKGROUND

High availability is a system design approach and associ-
ated service implementation that ensures a prearranged level
of operational performance will be met during a contractual
measurement period. Users want software systems to be
ready to serve them at all times. Availability refers to the
ability of the user community to access the system, whetherto
submit new work, update or alter existing work, or collect the
results of previous work. If a user cannot access the system, it
is said to be unavailable. Generally, the term downtime is used
to refer to periods when a system is unavailable.

Virtualization or cloud-computing environments has
allowed IT infrastructure to reduce dependence on physical
hardware. Yet, virtual machines still run in memory on a
physical host. If the physical host reboots or fails, the memory
also fails. In a high-availability configuration, this requires
that another virtual machine take over providing services.
However, any data in the memory of the failing virtual
machine will be lost. There is also a time delay while the
backup resources are brought on line and start providing
service. In the past, work has been done to cut down this
failover time for virtual machines by keeping two copies of
memory so that a second virtual machine can be started and
pickup exactly where the other virtual machine left off. With
the growth in memory sizes, keeping two virtual machine’s
memory in sync across the network has become very difficult.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is an example system diagram showing a primary
physical host and a failover physical host.

FIG. 2 is an example system diagram showing a plurality of
virtual machine instances that can be used.

FIG. 3 is an example memory synchronization manager
having multiple virtual machine memory maps.

FIG. 4 is a flowchart of a method for synchronizing
memory between a primary virtual machine and a failover
virtual machine.

FIG. 5 is a flowchart of an alternative embodiment for
synchronizing memory.

FIG. 6 shows further details of a method that can be per-
formed when synchronizing memory.

FIG. 7 is a flowchart showing a synchronization initializa-
tion phase.

FIG. 8 is a flowchart of a method for synchronizing from
the perspective of the primary physical host.

FIG. 9 is a flowchart of a method for synchronizing from
the perspective of the backup physical host.

FIG. 10 is a flowchart of a method for partial failure of the
primary physical host.

FIG. 11 is a flowchart of a method for complete failure of
the primary physical host.

DETAILED DESCRIPTION

FIG. 1 is an example system 100 showing a primary physi-
cal host 110 and a failover physical host 112. The primary
physical host 110 includes a hypervisor 114. As is well under-
stood in the art, the hypervisor presents a virtual operating
platform and manages execution of potentially multiple oper-
ating systems that can share virtualized hardware resources
on the primary physical host 110. An example primary virtual
machine 116 is shown executing on the hypervisor 114. When

10

15

20

25

30

35

40

45

50

55

60

65

2

the virtual machine 116 performs a memory write function, it
can communicate through the hypervisor to a physical layer
of the primary physical host 100 that includes a hardware-
based memory synchronization manager (MSM) 120 and a
memory 122. The MSM can include a hash generator 124 (or
alternatively a checksum generator) and a memory controller
126. The memory controller 126 can be included within the
MSM 120 or positioned separately therefrom. Generally, the
memory controller 126 controls the timing needed to com-
plete reads and writes to the physical memory 122. The MSM
120 can communicate with a MSM 130 located on the
failover physical host 112 through a network 132. The MSM
130 can include a hash checker 140 (or alternatively a check-
sum checker) and a memory controller 142, which can be
separated from the MSM 130. The memory controller 142 is
for writing to a redundant memory 150, which stores a backup
copy of memory 122 used by the primary virtual machine
116. The failover physical host 112 also includes a failover
virtual machine 160 that can be used should the primary
virtual machine 116 fail or otherwise terminates abnormally.
As further described below, the failover virtual machine 160
can remain in a paused state until such time as a hypervisor
162 initiates the failover virtual machine 160. Once the
failover virtual machine 160 starts, the redundant memory
150 can be synchronized to the memory 122 used by the
primary virtual machine so as to make the transition seamless
when switching between the virtual machines. In the case of
disaster recovery, a persistent storage device 170, such as a
solid-state drive (SSD), can be used.

The system 100 of FIG. 1 can use memory change tracking
to lessen an amount of data that is synchronized between the
primary virtual machine and the failover virtual machine so
that the failover virtual machine can immediately take over
operations should the primary virtual machine become
unavailable. The MSMs 120, 130 can be used to track the
changes in the memory 122 and transmit the same to the
failover physical host 112 so that the changes can be avail-
able, if necessary, by the failover virtual machine 160. The
change tracking can be synchronized in nearly real time
between the two physical hosts 110, 112, and can be small
enough data updates to allow minimal network bandwidth
over the network 132. In some embodiments, a change log
can be maintained and used to bring the redundant memory
150 up to a synchronized state. In the case of wide-spread
failure, memory changes and the base memory footprint can
be stored on the persistent storage device 170 to speed off-site
recovery.

In some embodiments, the virtual machine’s memory can
be segmented so that only a critical section of memory is
synchronized to further reduce synchronization overhead.
The hash checker 140 can be used to rebuild any missing bits
on the failover physical host. Additionally, the failover virtual
machine 160 can be maintained in a pause state in order to
reduce power consumption.

FIG. 2 is a computing system diagram of a network-based
service center 200 that illustrates one environment in which a
website analyzer can be used. By way of background, the
service center 200 is capable of delivery of computing and
storage capacity as a service to a community of end recipi-
ents. Generally speaking, the service center 200 can provide
the following models: infrastructure as a service, platform as
a service, and/or software as a service. Other models can be
provided. For the infrastructure as a service model, the ser-
vice center 200 can offer computers as physical or virtual
machines and other resources. The virtual machines can be
run as guests by a hypervisor, as described further below. The
platform as a service model delivers a computing platform



