US 7,593,943 B2

13

sponding master page except that the conflicting revision is
highlighted and displayed in place of the synchronized revi-
sion.

Proceeding to block 710, a conflict indicator is displayed
on the master page of the shared object. The conflict indicator
may be a drop down menu, a tab, or any other mechanism that
informs a user that a conflict page is available for the master
page. The conflict indicator for a conflict page associated with
aparticular user may be distinct from the conflict indicator for
conflict pages associated with other users such that a current
user may quickly identify the conflict pages generated by the
current user.

Advancing to block 720, the conflict page is displayed
alongside the master page when the conflict indicator is
selected. The user is presented with both the synchronized
state of the master page and the corresponding conflict page.

Transitioning to block 730, the user reconciles and merges
the conflicting revisions into the master page. In one embodi-
ment, the user may select the content container such that the
content container is merged with the master page. In another
embodiment, the user may directly implement revisions onto
the master page. In yet another embodiment, the user may
identify conflicting revisions as irrelevant.

Continuing to block 740, conflicting revisions that are
identified as irrelevant are purged. In one embodiment, con-
flicting revisions may be identified as irrelevant by a user. In
another embodiment, conflicting revisions may be automati-
cally identified as irrelevant. For example, a user may have
synchronized several revisions with the master version of the
shared object located on a server while ignoring any corre-
sponding conflict pages. The older conflict pages that the user
did not reconcile are identified as irrelevant after a predeter-
mined time period has elapsed. Processing then terminates at
an end block.

FIG. 8 illustrates an operational flow diagram illustrating a
process for synchronizing multiple user revisions to a shared
object. The process begins at a start block where different
versions of shared object are stored in different locations
throughout a system. Moving to block 800, the shared object
is downloaded from a store to a client.

Proceeding to decision block 810, a determination is made
whether the shared object is the current version of the shared
object. If the shared object is the current version of the shared
object, processing terminates at an end block. If the shared
object is not the current version of the shared object, process-
ing continues at block 820. The shared object may not be the
current version because the most recent revision to a content
container of the shared object is not available from the store.

Advancing to block 820, a request tag and client informa-
tion are assigned to the store to indicate that the client requires
the most recent revision data to update the shared object. The
client information may include a GUID that identifies the
requesting client and a time stamp that identifies the time
when the client requested the current version of the shared
object from the store.

Transitioning to block 830, the current version of the
shared object is received at the store. The store may receive
the current version of the shared object when another client
accesses the store with the most recent revision data. The
requesting client is informed that the current version of the
shared object has been received by the store. Continuing to
block 840, the current version of the shared object is synchro-
nized with the requesting client. Processing then terminates at
the end block.

FIG. 9 illustrates an operational flow diagram illustrating a
process for seamlessly transitioning from asynchronous to
synchronous communication modes. The process begins at a

10

15

20

25

30

35

40

45

50

60

65

14

start block where a peer group is established that identifies
users who are authorized to access a shared object.

Moving to block 900, a client accesses the shared object on
aserver. The client is automatically connected to other clients
that are also accessing the shared object (i.e., the peer group).
The shared object is associated with a manifest file. The
shared object includes a unique location identifier that iden-
tifies the location where the corresponding manifest file is
stored in the system.

Proceeding to block 910, the manifest file is retrieved from
the location identified by the unique location identifier. The
manifest file identifies the locations where other versions and
instances of the shared object are stored within the system.
The manifest file includes a peer group identifier for the peer
group where a version of the shared object is stored.

Advancing to block 920, a peer-to-peer network is estab-
lished when any other client in the peer group accesses a
version or instance of the shared object identified by the
manifest file. Thus, the client may disconnect from the server
and continue to access the shared file on the peer-to-peer
network. Processing then terminates at an end block.

FIG. 10 illustrates an operational flow diagram illustrating
a process for seamlessly transitioning from synchronous to
asynchronous communication modes. The process begins at a
start block where a peer-to-peer network is established
between at least two users who are authorized to access a
shared object.

Moving to block 1000, a client accesses the shared object
on the peer-to-peer network. The shared object is associated
with a manifest file. The shared object includes a unique
location identifier that identifies the location where the cor-
responding manifest file is stored in the system.

Proceeding to block 1010, the manifest file associated with
the shared object is retrieved from the location identified by
the unique location identifier. The manifest file identifies the
locations where other versions and instances of the shared
object are stored within the system. Advancing to block 1020,
the client connects to a server. The client determines which
other clients are also connected to the server. Transitioning to
block 1030, the client identifies other clients that are autho-
rized to access the shared object from the peer-to-peer net-
work. Continuing to block 1040, the client connects to an
authorized client when the peer-to-peer network is unavail-
able. Processing then terminates at an end block.

The above specification, examples and data provide a com-
plete description of the manufacture and use of the composi-
tion of the invention. Since many embodiments of the inven-
tion can be made without departing from the spirit and scope
of the invention, the invention resides in the claims hereinaf-
ter appended.

What is claimed is:

1. A computer-implemented method for synchronizing
multiple user revisions to a shared object, comprising:

accessing a shared object on a server to form an asynchro-

nous server communication mode between a client
device and the server;

determining a location of a manifest file for the shared

object based on a unique location identifier in the
accessed shared object;

obtaining the manifest file on the client device based on the

unique location identifier in the accessed shared object,
wherein the manifest file includes a network location
identifier for concurrently accessed versions of the
shared object in a synchronous peer communication
mode that provides real-time communication;

based on the obtained manifest file, automatically and

seamlessly transitioning from the asynchronous server



