US 7,593,943 B2

11

another user is revising a particular content container. The
user may be encouraged to revise a different content container
until the other user’s revisions are complete.

FIG. 5 illustrates a block diagram of a system for synchro-
nizing multiple user revisions to a shared object. The system
includes clients 500, 510, 540, 550 and servers 520, 530.
Client 500 is coupled to servers 520, 530. Client 510 is
coupled to server 520. Clients 540, 550 are coupled to server
530. Client 540 includes store 542 and child store 544. Server
520 includes store 522 and child stores 524, 526. Server 530
includes store 532. Store 532 includes substores 534, 536.

Stores 522, 532, child stores 524, 526, and substores 534,
536 may store revisions associated with a shared object. Store
522, 532, child stores 524, 526 and substores 534, 536 are
hierarchical. For example, store 522 may be associated with
an entire shared notebook document. Child store 524 may be
associated with a section of the shared notebook document.
Child store 526 may be associated with a page of the shared
notebook document. In one embodiment, only the most
recent version of the top-level shared object is included in
store 522. Store 532 may store an entire top-level shared
object. Substores 534, 536 are associated with portions of the
shared object. For example, substore 534 may be associated
with a section of the shared object, and substore 536 may be
associated with a different section of the shared object.

An application may load a shared object from server 520 or
server 530 to client 500 without a current version of a par-
ticular content container of the shared object. For example,
client 500 requests a shared object from store 522. The most
recent available version of the shared object is presented at
client 500. The most recent available version of the shared
object may not correspond to the current version of the shared
object because data of the most recent revision is not available
in the corresponding child store 526. A request tag is assigned
to child store 526 to indicate that client 500 requires the most
recent revision data to update the shared object. Child store
526 may also be assigned a time stamp that identifies the time
and date when client 500 requested the revision data from
child store 526. Child store may also be assigned a GUID that
identifies the client that requested the data (e.g., client 500).
The request tag, time stamp, and GUID are used to inform
client 500 when another client accesses child store 526. For
example, client 510 may access child store 526 with the most
current revision data. Thus, client 500 is informed that the
most current revision data of the shared object is available in
child store 526.

Client 500 may be a user’s home computer and client 540
may be a user’s work computer. Server 530 may be an
exchange server that transfers a revision file between clients
500, 540. The revision file may be used to update a shared
object stored on clients 500, 550. In one embodiment, client
500 is restricted from handling files larger than a predeter-
mined size (e.g., 2 megabytes). For example, client 500 may
include an email application that limits the size of email
messages that may be received. Store 542 includes revisions
associated with a top-level shared object. Child store 544
includes revisions associated with a content container of the
shared object.

Client 540 may poll server 530 to determine whether
another client has submitted a data revision request. Client
540 may satisfy the request when the latest version of the
requested data revision is available in store 542 or child store
544. Client 540 may transfer the entire requested revision to
client 500 if the size of the revision file is less than the limit
that can be handled by client 500. Ifthe size of the revision file
is greater than the limit, the file may be divided into smaller
files that are less than the limit. Alternatively, the size of the

10

15

20

25

30

35

40

45

50

55

60

65

12

revision file may be reduced by deleting previous requests.
The smaller files are then transferred from client 540 to client
500 through server 530.

Multiple requests for revision data may be waiting on a
server. In one embodiment, the requests may be made from
different clients (e.g., clients 500, 550). Each requesting cli-
ent may be associated with a different file size limit. For
example, client 500 is limited to files less than 2 megabytes
and client 550 may handle files up to 20 megabytes. There-
fore, both requests cannot be satisfied through one transfer
transaction when the revision file is greater than 2 megabytes.
In one embodiment, a priority bit is associated with each
requesting client to establish the order in which the requests
are satisfied.

The requests are satisfied by synchronizing the revision file
with clients 500, 550. The revision file may be synchronized
with clients 500, 550 in one transaction or through a series of
multiple transactions depending on the size of the revision
file. Each client 500, 550 determines that the request is satis-
fied when the entire revision file is synchronized. Client 540
may purge the requested data because the requests are satis-
fied. Client 540 may later poll server 530 to determine if any
additional requests are waiting to be satisfied.

FIG. 6 illustrates an operational flow diagram illustrating a
process for synchronizing multiple user revisions to a shared
object. The process begins at a start block where many users
are authorized to access and revise a shared object simulta-
neously (i.e., the peer group). The object may be any entity
capable of being shared such as a file. The peer group may be
identified by a peer group identifier. Different versions of the
shared object are identified by corresponding GUIDs and
time stamps. The time stamp identifies the time when the
shared object was last synchronized with a revision.

Moving to block 600, a user revises the shared object. The
shared object may be revised on a server, in a local cache, or
on a peer-to-peer network. In one embodiment, the revision is
stored as a revision file. Proceeding to block 610, the revision
is associated with a GUID and a time stamp. The time stamp
identifies the time when the user revised the shared object.

Advancing to block 620, the latest version of the shared
object is located. The latest version of the shared object is the
version that includes the most recent revisions that are syn-
chronized with the shared object and made available to other
authorized users. The latest version of the shared object may
be determined from the time stamps and GUIDs associated
with different versions of the shared object.

Transitioning to decision block 630, a determination is
made whether any conflicting revisions exist. Revisions may
conflict when different users revise the same content con-
tainer. The revision cannot be synchronized with the shared
object if conflicting revisions exist. If conflicting revisions
exist, processing continues at block 640 where the conflicting
revisions are reconciled and merged (as discussed with ref-
erence to FIG. 7). If no conflicting revisions exist, processing
continues at block 650 where the revision is synchronized
with the shared object such that other users may view the
revision. Processing then terminates at an end block.

FIG. 7 illustrates an operational flow diagram illustrating a
process for reconciling and merging conflicting multiple user
revisions to a shared object. The process begins at a start block
where more than one user has revised the same content con-
tainer in a shared object. A conflict results when one of the
revised content containers is synchronized with the shared
object such that any other revisions to the content container
cannot be synchronized.

Moving to block 700, the conflicting revision is displayed
on a conflict page. The conflict page resembles the corre-



