US 7,107,441 B2

1

PRE-BOOT INTERPRETED NAMESPACE
PARSING FOR FLEXIBLE
HETEROGENEOUS CONFIGURATION AND
CODE CONSOLIDATION

TECHNICAL FIELD

This disclosure relates generally to using an interpreted
language code to interact with hardware devices of a pro-
cessing system during a pre-boot runtime, and in particular
but not exclusively, relates to sharing advance configuration
and power interface machine language control methods
across a pre-boot runtime and an operating system runtime
of a processing system.

BACKGROUND INFORMATION

Modern computers are complex computing systems,
evolving at an ever-increasing rate. With rapid evolution of
technologies, original equipment manufacturer (“OEM”)
system builders are presented with the difficult task of
providing seamless integration between cutting edge tech-
nologies and legacy technologies. As a result, these OEM
system builders often resort to ad hoc methods to integrate
the new with the old. These ad hoc methods, while often
providing a sufficient solution, often fail to fully leverage the
advantages of these new technologies.

One such new technology is the Advance Configuration
and Power Interface (“ACPI”), defined in the ACPI Speci-
fication, Revision 2.0a, Mar. 31, 2002 developed in coop-
eration by Compaq Computer Corp., Intel Corp., Microsoft
Corp., Phoenix Technologies .td., and Toshiba Corp. The
ACPI Specification was developed to establish industry
common interfaces enabling robust operating system (“OS”)
directed motherboard device configuration and power man-
agement of both devices and entire systems. ACPI evolves
an existing collection of power management BIOS code,
Advance Power Management (“APM”) application pro-
gramming interfaces (“APIs”), and the like into a well-
defined power management and configuration interface
specification. ACPI provides a way for an orderly transition
from existing legacy hardware to ACPI hardware, and
allows for both ACPI and legacy mechanisms to simulta-
neously exist within a single processing system.

The ACPI specification further describes a programming
language, called ACPI Source Language (“ASL”), in which
hardware designers can write device interfaces, called con-
trol methods. ASL is compiled into ACPI machine language
(“AML”) and the AML control methods placed in ACPI
tables within system memory for use by the OS to interact
with hardware devices.

The basic input output system (“BIOS”) sets up the ACPI
tables during the boot process (i.e., pre-boot runtime);
however, the BIOS itself does not use the AML control
methods to interact with the hardware devices of the pro-
cessing system. Instead, the BIOS relies on BIOS APIs,
generally stored in nonvolatile flash memory, to perform the
very same interactions with hardware devices as are
described by the AML control methods. These BIOS APIs
are usually coded in C and compiled into machine language
binaries for use by the BIOS.

Thus, OEM system builders must include two indepen-
dent sets of coded device interfaces—APIs for use by the
BIOS and AML control methods for use by the OS—to
perform the same tasks. This ad hoc integration of the new
ACPI technology with the old BIOS API legacy is wasteful
both in terms of limited nonvolatile flash memory and OEM

10

15

20

25

30

35

40

45

50

55

60

65

2

system builder time. Furthermore, this ad hoc integration
fails to fully leverage the advantages of ACPIL.

For example, AML is a declarative language which
describes how a particular interaction with a hardware
device may be accomplished and allows the entity calling
the AML control method to decide whether or not it wishes
to execute the particular tasks described. AML increases
system reliability by bounding and guarding the operation of
low-level management code. In other words, AML is trans-
parent as to its internal or physical level operations. In
contrast, BIOS APIs are defined by an imperative machine
language called binaries. An entity calling a binary has no
idea how or what the binary executes to accomplish the
requested hardware task. Because BIOS APIs are manipu-
lating hardware registers to control hardware devices, the
computing system is particularly vulnerable to errant writes
and other failures. Prior experience with BIOS APIs shows
that they are a rich source of problems. Thus, API binaries
do not provide the level of supervision and transparency of
operation, as provided by AML control methods.

Another deficiency with API binaries is their lack of
portability between software platforms. API binaries are
compiled to execute within a particular platform environ-
ment. Where as AML control methods abstract the physical
implementation through use of an OS interpreter. The OS
interpreter interprets the AML control methods on the fly
thereby accommodating various software platforms. The OS
interpreter (a single entity) may need to be platform specific,
but the multitudes of AML control methods are platform
independent.

BRIEF DESCRIPTION OF THE DRAWINGS

Non-limiting and non-exhaustive embodiments of the
present invention are described with reference to the fol-
lowing figures, wherein like reference numerals refer to like
parts throughout the various views unless otherwise speci-
fied.

FIG. 1 is a block diagram illustrating a processing system
to execute interpreted language code to interact with hard-
ware devices of the processing system during a pre-boot
runtime, in accordance with an embodiment of the present
invention.

FIG. 2 is a flow diagram illustrating a method to execute
interpreted language code to interact with hardware devices
of a processing system during pre-boot runtime, in accor-
dance with an embodiment of the present invention.

FIG. 3 is a block diagram illustrating an ACPI namespace
for sharing AML control methods across the pre-boot runt-
ime and the OS runtime, in accordance with an embodiment
of the present invention.

FIG. 4 is a flow diagram illustrating a method to execute
interpreted language code for configuring hardware devices
during a pre-boot runtime, in accordance with an embodi-
ment of the present invention.

FIG. 5 is an exemplary setup display for configuring
hardware devices using an interpreted language code during
the pre-boot runtime, in accordance with an embodiment of
the present invention.

FIG. 6 illustrates an exemplary computer system to
execute interpreted language code to interact with hardware
devices of the computer system during a pre-boot runtime,
in accordance with an embodiment of the present invention.



