4,636,940

1

LOGIC ANALYZER USING SOURCE PROGRAM
OR OTHER USER DEFINED SYMBOLS IN THE
TRACE SPECIFICATION AND THE TRACE
LISTING

CROSS REFERENCE TO RELATED
APPLICATION

This application is a continuation of application Ser.
No. 481,010, filed Mar. 31, 1983, now abandoned.

FIELD OF THE INVENTION

The subject matter of the present invention pertains
to improvements in logic state analysis, and may apply
to both logic state analyzers and the debuggers used in
conjunction with emulators.

BACKGROUND AND SUMMARY OF THE
INVENTION

The development of executable code for processor
based systems frequently involves the use of compilers
and assemblers that produce relocatable object code.
When such programs are subsequently linked and
loaded a trace listing provided by a logic state analyzer
can be at best tedious to appreciate, and at worst ex-
tremely difficult to follow. Even a reverse assembler
can not replace a reference to an arbitrary address with
the corresponding symbol used in the original source
program. To do that requires an appreciation on the
part of the user of how the various software tools inter-
act, and of how they modify the relocatable object code
to produce a final absolute value. A considerable
amount of tedious nondecimal arithmetic may be re-
quired to relate the actual events reflected in the trace
to a collection of source program listings. The situation
would be bad enough in cases where the hardware in
the target system is known to be good, and what is
being debugged is simply the software. But in many
development situations there may be bugs in both the
hardware and the software. This makes it especially
important to be able to rely on the trace for information
about what really happened, as there may well be a
discrepancy between actual events and the legitmate
aims of even a properly written program. Under these
circumstances it would be less wise to think of the trace
as a hardware version of the program listing, and more
useful to think of the program listing as a guide to un-
derstanding the trace. In these types of situations the
extra overhead of “unrelocating” a trace can be particu-
larly burdensome. It would be especially desirable if all
absolute values for addresses and operands in the trace
were replaced with notations involving the symbols
used by the programmer in the original source pro-
grams. Such symbols might refer to individual locations
or to ranges of locations. It would be useful if similar
symbols could be defined in addition to the ones found
in the source listings, without having to edit the sources
to include them. It would also be helpful if references to
original source program line numbers could be included
in the trace, or even actual source lines. This would aid
a great deal in allowing the user to follow overall pro-
gram flow.

Another development or troubleshooting situation
pertinent to the invention can arise in connection with
the operation of finite state machines. A trace of such a
state machine is a sequential series of states: e.g., 001001,
010001, 010011, etc. It is frequently the case these states
can be given labels, such as “INC_P_REG”, (incre-

15

20

30

35

40

45

50

55

65

2
ment P register), “WAIT_MEMC”, (wait for Memory
Complete), or STM (Start Memory Cycle). It would be
desirable if a logic analyzer could provide a listing of
the trace in terms of such labeled states. Each state in
the listing would either be a label or a value relative to
a label. In the latter case there might be several states in
some process, say a read memory cycle. The label
RMCY might refer to the first state in the process.
RMCY +3 would denote the fourth state therein with-
out having to invent labels for every separate state in
the process (and by implication, in the entire machine).

The ability of the logic state analyzer described
herein to integrate source program symbols and source
lines into the trace listing arises from giving that analy-
zer access to the symbol tables produced by any com-
piler or assembler that produced the code (whether
absolute or relocatable) and by giving the analyzer
access to the decisions made by the linker or relocating
loader. Using this information the analyzer can deter-
mine by various inspection processes what symbols to
use in the trace listing.

A further benefit emerges from the ability to do this.
It is then also possible to at once expand and simplify
the process of defining the trace specification for the
analyzer. The trace specification tells the analyzer
under what conditions to commence the trace and ex-
actly what type of information to include therein. With
the aid of the invention it is possible to use source pro-
gram symbols in the trace specification without having
to learn what their absolute values are at run time. This
is quite useful, as those absolute values are apt to change
as bugs are found and fixed, or as different versions of
the software are developed and tested. But an analyzer
constructed to take advantage of the various symbol
tables and the load map need not have its trace specifi-
cation altered merely because one or more programs are
of different lengths than before, or because the pro-
grams are loaded in a different order. The symbolic
nature of a “relocatable trace specification” makes that
unnecessary.

These principles may be extended to apply to logic
state analysis performed upon target systems that incor-
porate memory management units. In such target sys-
tems the relocated addresses issued by the processor are
virtual addresses that are further modified in real time
by the memory management unit as the processor runs.
The modified addresses are the actual physical ad-
dresses sent to the memory. Their values are contingent
upon run time conditions reflecting what parts of mem-
ory are allocated to which programs or tasks. These
allocations are dynamic, and generally cannot be given
in advance as fixed absolute offsets to be applied to the
relocated addresses present at run time. Those relocated
address are themselves offset by some relocation base
from the relocatable addresses issued by the assembler
or compiler, as mentioned above. Thus, such a memory
managed address involves some absolute value that
results from dynamically offsetting a relocated value
that is already offset by a fixed amount from the reloca-
table value appearing in the source listings.

The dynamic offsets mentioned above need not be
entirely private to processes within the target system,
and therefore mysterious to the logic state analyzer.
The symbols representing the various dynamic offsets
can be defined to the logic state analyzer. Then pro-
vided certain criteria pertaining to keeping public
knowledge of the offsets current (a task specific to the



