5,313,636

1

MOSAIC OBJECTS AND METHOD FOR
OPTIMIZING OBJECT REPRESENTATION
PERFORMANCE IN AN OBJECT-ORIENTED
REPRESENTATION SYSTEM

This is a continuation of application Ser. No.
07/589,114, filed Sept. 27, 1990, now abandoned.

COPYRIGHT NOTICE

A portion of the disclosure of this patent document
contains material which is subject to copyright protec-
tion. The copyright owner has no objection to the fac-
simile reproduction by anyone of the patent document
or the patent disclosure as it appears in the Patent and
Trademark Office patent file or records, but otherwise
reserves all copyright rights whatsoever.

BACKGROUND OF THE INVENTION

This invention relates to the field generally known as
artificial intelligence and more particularly to program-
ming in frame-based systems or more generally to ob-
ject-oriented systems. Specifically, this invention relates
to techniques for software development of an object-
oriented system.

In the past, optimization of software-based systems
and specifically of object-oriented systems has been
dependent on the developer. While no solution for gen-
eral software-based systems is known, characteristics of
object-oriented systems have features which, according
to the invention disclosed hereinafter, permit develop-
er-independent optimization.

Many known computer languages support static data
representation. Fewer languages support dynamic data
representation. In static data representation, the deci-
sion on the internal layout of the data structure and
representation is made at compile time of the computer
program. All static data representation systems require
prior specification of individual language, of each indi-
vidual field and of each data type, such as integer, float-
ing point, aggregate or the like. This greatly reduces
flexibility of programming and data handling and ex-
tends the development time, although it does provide
the best possible performance, since data access charac-
teristics ar all determined at compile time. An example
of an object-oriented language with static data represen-
tation capability is the C+ + language.

In alanguage capable of dynamic data representation,
the decision on internal layout of data structure is de-
ferred until run time of the program, which allows
efficient applications development. The dynamic repre-
sentation capability is an important distinction over
static data representation. The proto-typical example of
an object-oriented language capable of dynamic data
representation is the SmallTalk language of Xerox Cor-
poration. Because of frequent and extensive lookup at
program run time, the typical system with a dynamic
data structure yields significantly slower run-time per-
formance than a comparable system having a static data
structure. Although it allows for easy applications de-
velopment, SmallTalk does not Tun many practical ap-
plications in a generally acceptable amount of time. As
a consequence, programmers may use SmallTalk or
other similar languages with dynamic data structures
during system development but thereafter recode a
production system in another language which supports
static data representation.

10

—

5

25

40

45

55

60

65

2

It is therefore desireable to provide a programming
environment which is easy and flexible for development
of a software-based system and which does not require
extensive reengineering in a different language for pro-
duction of a software-based system.

The problem area herein addressed is not to be con-
fused with the area of database management, where
database management systems employ dynamic look-up
capabilities as part of an indexing scheme on a revisable
database. The problem addressed herein is how to mini-
mize recoding of source code in a generalized object-
oriented programming environment.

What is needed is a programming environment and
methodology that allows delay until compile time of
any specification about how static the structure is to be,
and what is needed is a range of options between the
formation of a dynamic data structure and the formation
of a fully static data with commensurate improvements
over a program with fully dynamic data representation.

Definitions

In order to more fully understand the invention, an
understanding of certain terms is helpful. These defini-
tions are not necessarily all-inclusive, and it should be
understood that even within certain audiences of the
relevant arts, common concepts employ different termi-
nology and common terms have various meanings.

An “object” is a specific term of art, sometimes re-
ferred to as a “unit” in the literature, which is a data
structure. It is analogous to a “row” in a relational
database. Typically the term “object” refers to data
structures which carry both attributes (“slots”) and
behaviors or methods.

An “attribute” is a specific term of art, sometimes
referred to as a “slot” in the literature, which is a “prop-
erty” of an “object,” such as a method associated with
an “object.” A parallel concept is the “fields” of a data
structure. The artificial intelligence community refers
to the concept by both terms.

A “frame” is an “object” with some additional capa-
bilities, such as secondary structure, or attributes of
attributes, active capabilities called for example “moni-
tors,” “active values,” or “triggers”, and self-descrip-
tive capabilities, such as an understanding what attri-
butes it has, what its parents are or what its parents or
children are.

A “frame-based system” is a system of frames, or in
other words, a system which has a self-descriptive capa-

“bility.

An “object system” is a “frame-based system” which
in many cases does not have the ability to describe itself.

A “value” is a term of art defining what is “in” an
attribute (“slot”) at any particular moment.

A “selector” is a reference to an “attribute.” It is a
name given to an “attribute” and the way by which
access to the “attribute” is specified.

Other definitions have been or will be introduced as is
helpful for an understanding of the invention.

SUMMARY OF THE INVENTION

According to the invention, an object-oriented soft-
ware-based system is optimized by providing a data
representation which is initially permitted to be com-
pletely dynamic, that is, a decision on layout of internal
data structure is deferred such that at compile time
during development data need not be specified and
thereafter the data structure and representation is pro-
gressively specified and optimized. The invention is



