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METHOD OF DIGITAL IMAGE
ENHANCEMENT AND SHARPENING

PRIORITY CLAIM

This application claims the benefit of the filing date of
U.S. Provisional Patent Application Ser. No. 60/100,136,
filed Sep. 14, 1998 for “METHOD OF DIGITAL IMAGE
ENHANCEMENT AND SHARPENING BASED ON
MINIMUM GRADIENT SUPPORT CONSTRAINT.”

TECHNICAL FIELD

The present invention relates in general to image
processing, and, in particular, to image enhancement and
sharpening.

The method, for example, can be applied to optical image
processing, for image restoration and sharpening in
biomedical, geophysical, astronomical, high definition
television, re-mote sensing, and other industrial applica-
tions.

BACKGROUND ART

Comprehensive coverage of the prior art may be found,
for example, in W. K. Pratt, “Digital Image Processing,” 2nd
Edition, John Wiley and Sons, NY (1988); H. Stark, “Image
Recovery; Theory and Application,” Academic Press, Inc.,
Harcout Brace Jovanovich Publishers, New York (1987); R.
C. Gonzalez and P. Wintz, “Digital Image Processing,” 2nd
Edition, Addison-Wesley Publishing Company, Inc.,
Advanced Book Program, Reading, Mass. (1987); and R. L.
Lagendijk and J. Biemond, “Iterative Identification and
Restoration of Images,” Kluwer International Series in Engi-
neering and Computer Science, Kluwer Academic
Publishers, Boston, Mass., (1991).

There have been several attempts to develop a method of
image processing and restoration based on the solution of
the linear ill-posed inverse problem:

d=Bm, @

where d is the blurred (or degraded) image, m is original (or
ideal) image, and B is the blurring linear operator of the
imaging system. Note that the original image, as well as the
blurred image, can be defined in a plane (2-D image:
m=m(x,y), d=d(x,y)) or in a volume (3-D image: m=m(X,y,
z), d=d(X,¥,2)).

A wide variety of electron-optical devices obey equation
(1) with different blurring operators as noted by C. B.
Johnson et al., in “High-Resolution Microchannel Plate
Image Tube Development,” Electron Image Tubes and
Image Intensifiers II, Proceedings of the Society of Photo-
Optical Instrumentation Engineers, Vol. 1449. 1. P. Csorba,
Ed. (1991), pp. 2-12. These devices are used in various
biomedical imaging apparatus, including image intensifier-
video camera (II-TV) fluoroscopic systems (see S. Rudin et
al., “Improving Fluoroscopic Image Quality with Continu-
ously Variable Zoom Magnification,” Medical Physics. Vol.
19 (1991), pp. 972-977); radiographic film digitizers (see F.
F. Yin et al, “Measurement of the Presampling Transfer
Function of Film Digitizers Using a Curve Fitting
Technique,” Medical Physics, Vol. 17 (1990), pp. 962-966);
radiographic selenium imaging plates (see P. J. Papin and H.
K. Huang, “A Prototype Amorphous Selenium Imaging
Plate System for Digital Radiography,” Medical Physics,
Vol. 14 (1987), pp. 322-329); computed radiography sys-
tems (see S. Sanada et al., “Comparison of Imaging Prop-
erties of a Computed Radiography System and Screen-Film
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Systems.” Medical Physics, Vol. 18 (1991), pp. 414-420; H.
Fujita et al., “A Simple Method for Determining the Modu-
lation Transfer Function in Digital Radiography,” IEEE
Transactions on Medical Imaging, Vol. 11 (1992), pp.
34-39), digital medical tomography systems (see M. Taka-
hashi et al., “Digital *IV Tomography: Description and
Physical Assessment,” Medical Physics, Vol. 17 (1990), pp.
681-685).

Geophysical, airborne, remote sensing, and astronomical
blurred images also can be described by equation (1) (see M.
Bath, “Modern Spectral Analysis with Geophysical
Applications,” Society of Exploration Geophysicists,
(1995), 530 pp.; C. A. Legg, “Remote sensing and geo-
graphic information systems,” John Wiley & Souns,
Chichester, (1994), 157 pp.).

Most prior efforts to solve the problem: (1) are based on
the methods of linear inverse problem solutions. Inverse
problem (1) is usually ill-posed, i.e., the solution can be
non-unique and unstable. The conventional way of solving
ill-posed inverse problems, according to regularization
theory (A. N., Tikhonov, and V. Y., Arsenin, “Solution of
ill-posed problems,” V. H. Winston and Sons., (1977); M. S,
Zhdanov, “Tutorial: regularization in inversion theory,”
Colorado School of Mines (1993)), is based on minimization
of the Tikhonov parametric functional:

P my=p(m)+as(m), @
where ¢p(m) is a misfit functional determined as a norm of the
difference between observed and predicted (theoretical)
degraded images:

O(m)=|Bm~dP=(Bm~d, Bm~d). ©)
Functional s(m) is a stabilizing functional (a stabilizer).

It is known in the prior art that there are several common
choices for stabilizers. One is based on the least squares
criterion, or, in other words, on L, norm for functions
describing the image:

Sppgm)=llmllz=Gm,m)={ m*dv=min, ®
where V is the domain (in 2-D space or in 3-D space) of
image definition, and (. . ., ... ) denotes the inner product
operation.

The conventional argument in support of this norm comes
from statistics and is based on an assumption that the least
square image is the best over the entire ensemble of all
possible images.

Another stabilizer uses minimum norm of difference
between the selected image and some a priori image m,,,,:

St yape(m)=|m=m,,|P=min. ®

2,
-

This criterion, as applied to the gradient of image parameters
Vm, brings us to a maximum smoothness stabilizing func-
tional:
Smax sm(M)=IVm|?=(Vm, Vm)=min. (6)
Such a functional is usually used in inversion schemes. This
stabilizer produces smooth images. However, in many prac-
tical situations the resulting images don’t describe properly
the original (ideal) image. Inversion schemes incorporating
the aformentioned functional also can result in spurious
oscillations when m is discontinuous.
It should be noted that in the context of this disclosure,
“image parameters” is intended to describe the physical
properties of an examined media. Such parameters include



