5,878,434

1

TRANSACTION CLASH MANAGEMENT IN
A DISCONNECTABLE COMPUTER AND
NETWORK

FIELD OF THE INVENTION

The present invention relates to the detection and resolu-
tion of inconsistent updates performed on disconnected
computers, and more particularly, to clash handling during
transaction synchronization when disconnectable computers
are reconnected.

TECHNICAL BACKGROUND OF THE
INVENTION

“Disconnectable” computers are connected to one another
only sporadically or at intervals. Familiar examples include
“mobile-link” portable computers which are connectable to
a computer network by a wireless links and separate server
computers in a wide-area network (WAN) or other network.
Disconnectable computers can be operated either while
connected to one another or while disconnected. During
disconnected operation, each computer has its own copy of
selected files (or other structures) that may be needed by a
user. Use of the selected items may be either direct, as with
a document to be edited, or indirect, as with icon files to be
displayed in a user interface.

Unfortunately, certain operations performed on the
selected item copies may not be compatible or consistent
with one another. For instance, one user may modify a file
on one computer and another user may delete the “same” file
from the other computer. A “synchronization” process may
be performed after the computers are reconnected. At a
minimum, synchronization attempts to propagate operations
performed on one computer to the other computer so that
copies of items are consistent with one another.

During synchronization, some disconnectable computers
also attempt to detect inconsistencies and to automatically
resolve them. These attempts have met with limited success.

For instance, the Coda File System (“Coda”) is a client-
server system that provides limited support for disconnect-
able operation. To prepare for disconnection, a user may
hoard data in a client cache by providing a prioritized list of
files. On disconnection, two copies of each cached file exist:
the original stored on the server, and a duplicate stored in the
disconnected client’s cache. The user may alter the duplicate
file, making it inconsistent with the server copy. Upon
reconnection, this inconsistency may be detected by com-
paring timestamps.

However, the inconsistency is detected only if an attempt
is made to access one of the copies of the file. The Coda
system also assumes that the version stored in the client’s
cache is the correct version, so situations in which both the
original and the duplicate were altered are not properly
handled. Moreover, Coda is specifically tailored, not merely
to file systems, but to a particular file system (a descendant
of the Andrew File System). Coda provides no solution to
the more general problem of detecting and resolving incon-
sistencies in a distributed database that can include objects
other than file and directory descriptors.

Various approaches to distributed database replication
attempt to ensure consistency between widely separated
replicas that collectively form the database. Examples
include, without limitation, the replication subsystem in
Lotus Notes and the partition synchronization subsystem in
Novell NetWare® 4.1 (LOTUS NOTES is a trademark of
International Business Machines, Inc. and NETWARE is a
registered trademark of Novell, Inc.).

10

15

20

25

30

35

40

45

50

55

60

2

However, some of these approaches to replication are not
transactional. Non-transactional approaches may allow par-
tially completed update operations to create inconsistent
internal states in network nodes. Non-transactional
approaches may also require a synchronization time period
that depends directly on the total number of files, directories,
or other objects in the replica. This seriously degrades the
performance of such approaches when the network connec-
tion used for synchronization is relatively slow, as many
modem or WAN links are.

Moreover, in some conventional approaches potentially
conflicting changes to a given set of data are handled by
simply applying the most recent change and discarding the
others. In other conventional systems, users must resolve
conflicts with little or no assistance from the system. This
can be both tedious and error-prone.

Thus, it would be an advancement in the art to provide a
system and method for detecting and handling inconsistent
changes to copied items when two disconnectable computers
are reconnected.

It would also be an advancement to provide such a system
and method which are not limited to file system operations
but can instead be extended to support a variety of database
objects.

Such a system and method are disclosed and claimed
herein.

BRIEF SUMMARY OF THE INVENTION

The present invention provides a system and method for
handling clashes during the synchronization of operations
performed on first and second disconnected computers. Each
disconnected computer contains a replica of a distributed
database. In one embodiment, the first computer is a mobile
client computer and the second computer is a central server
computer; in another embodiment, each computer is a server
on a network.

Synchronization of the database replicas is performed
after the computers are reconnected. Synchronization
includes a “merging out” step, a “merging in” step, and one
or more clash handling steps. During the merging out step,
operations performed on the first computer are transmitted to
the second computer and applied to the second replica.
During the merging in step, operations performed on the
second computer are transmitted to the first computer and
applied to the first replica.

Some of the clash handling steps detect transient or
persistent clashes, while other steps recover from at least
some of those clashes. Persistent clashes may occur in the
form of unique key clashes, incompatible manipulation
clashes, file content clashes, permission clashes, or clashes
between the distributed database and an external structure.
Recovery may involve insertion of an update before or after
a clashing update, alteration of the order in which updates
occur, consolidation of two updates into one update, and/or
creation of a recovery item.

In one embodiment of the present invention, operations
performed on each computer are represented by entries in an
update log kept on each computer. During recovery, the log
may be accessed to help regress persistently clashing
updates from the computer’s replica. Clash detection,
recovery, and regression are performed recursively after an
update regression to handle clashes caused by the update
regression. Log management steps permit the identification
of clashing updates in a log, the removal of a clash condition
by use of a repairing update, and compression of the update
log.



