5.768.532

3

18 contain data 36 that is allocated to the different computer
systems 12 #1. #2. and #3 in accordance with the partition
data 32.

Referring now to FIG. 3. the sequential operations per-
formed by processor 14 of one of the computer systems 12
to create the distributed file object 18 begin as indicated at
a block 300 with creating a node group as indicated at a
block 302. Remote system information is identified for each
of the multiple computers systems 12 #1. #2. and #3. as
shown in FIG. 1. as indicated at a block 304. A hash
algorithm 31 to be used for the file object 18 and a partition
distribution 32 for partitioning data among each of the
multiple computers systems 12 are identified as indicated at
a block 306. Various partitioning schemes can be used for
partitioning data. for example. a default partitioning scheme
can provide an even distribution of data among each of the
computer systems. Alternatively. a user specified partition-
ing scheme can provide a selected percentage for particular
ones of the computer systems 12, such as 50% of the data to
be stored on computer system 12 #1 and 25% of the data on
cach of computer systems 12 #2 and #3. A file object is
created and stored on the particular one of the computer
systems 12 as indicated at a block 308. The file object
contains the hash algorithm 31. partition distribution 32. and
remote system information 34. A remote connection is
established to another one of the multiple computer systems
12 and the file object is created on that particular system 12
as indicated at a block 310. Checking for other of the
multiple computer systems 12 that have not been accessed is
provided as indicated at a block 312. A next remote con-
nection is established to another one of the multiple com-
puter systems 12 and the file object is created on that
particular system 12 until the file object has been created on
all the computer systems 12.

Referring to FIG. 4, the sequential operations performed
by processor 14 of one of the computer systems 12 begin as
indicated at a block 400 with opening the distributed file
object 18 as indicated at a decision block 402. A data record
to be stored is received as indicated at a block 404. The hash
algorithm 31 is applied to the received data as indicated at
ablock 406. Then the hash algorithm result is compared with
the partition data 32 as indicated at a block 408. A remote
system can be identified as indicated at a decision block 410.
When a remote system is identified at block 410, then a
connection to the identified system is established as indi-
cated at a block 412. The data record 36 is inserted in the
particular remote system as indicated at a block 414.
Otherwise. when a remote system is not identified at block
410. then data record is inserted in the system that received
the data record at block 414 to complete the operations as
indicated at a block 416.

The result of this implementation is that when the dis-
tributed file object 18 is opened, and the user wants all the
data, all of the remote distributed file objects 18 can imme-
diately opened as well as the local distributed file object 18.
Also. there is a very simple process involved. since the
information is self-contained in the distributed file object 18.
At open time, the open process knows that the file is a
distributed object file 18, and can quickly find the commu-
nications information 34 needed to establish the remote
connections. No other objects or external constructs need to
be accessed in order to establish the remote connections.
Another benefit results when data is added to the file object
18. or data is updated in the file object because the hash
algorithm 31 applied to the new data is stored in each file
object 18. Again, the entire process can be handled without
accessing external programs, external catalogs, or any other

10

20

25

30

35

45

50

55

65

4

objects that describe this hashing information. Also. the
above process works in reverse, when querying the file for
specific values. When the user is querying for specific data.
the hash algorithm 31 is applied to the desired data. and the
hash result is compared to the partitioning data 32 to
immediately identify which system 12 #1, #2, or #3 contains
that data. Note that this can only be done when the user has
provided a search predicate that involves a test for equality.

Referring now to FIG. 5. an article of manufacture or a
computer program product 500 of the invention is illus-
trated. The computer program product 500 includes a
recording medium 502, such as. a floppy disk. a high
capacity read only memory in the form of an optically read
compact disk or CD-ROM. a tape, a transmission type media
such as a digital or analog communications link. or a similar
computer program product. Recording medium 502 stores
program means 504, 506. 508, 510 on the medium 502 for
carrying out the methods of the preferred embodiment in the
system 10 of FIG. 1.

A sequence of program instructions or a logical assembly
of one or more interrelated modules defined by the recorded
program means 504, 506, 508. 510. direct the computer
systems 12 for implementing self-describing file objects of
the preferred embodiment.

While the present invention has been described with
reference to the details of the embodiments of the invention
shown in the drawing. these details are not intended to Limit
the scope of the invention as claimed in the appended
claims.

What is claimed is:

1. A method for implementing self-describing file objects
comprising the steps of:

creating a node group to define multiple computer sys-

tems for storing the file object;
identifying a hash algorithm for applying to data records;
identifying a partition distribution map for distributing
data to each of said multiple computer systems utilizing
a set of predetermined hash algorithm results;

identifying remote system information for each of said
multiple computer systems; and

creating a file object in each of said multiple computer

systems; each said file object including said hash
algorithm, said partition distribution map, and said
remote system information.

2. A method for implementing self-describing file objects
as recited in claim 1 wherein said step of creating a file
object in each of said multiple computer systems; each said
file object including said hash algorithm, said partition
distribution map. and said remote system information
includes the steps of establishing a connection to each
remote computer system and storing said file object in each
said remote computer system.

3. A method for implementing self-describing file objects
as recited in claim 1 wherein said step of identifying said
partition distribution map includes the steps of utilizing a set
of possible hash values for said identified hash algorithm
and providing an equal distribution of said possible hash
values to said multiple computer systems.

4. A method for implementing self-describing file objects
as recited in claim 1 wherein said step of identifying said
partition distribution map includes the steps of utilizing a set
of possible hash values for said identified hash algorithm
and providing a user selected distribution of said possible
hash values to said multiple computer systems.

5. Amethod for implementing self-describing file objects
as recited in claim 1 further includes the steps of receiving



