5,752,032

1

ADAPTIVE DEVICE DRIVER USING
CONTROLLER HARDWARE SUB-ELEMENT
IDENTIFIER

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention is generally related to the design of
device drivers utilized in computer operating systems to
define and establish an interface between the core operating
system and typically hardware devices and. in particular. to
a modular device driver architecture providing a virtualized,
context switchable interface environment within which to
operate typically hardware devices in support of operating
system functions, specifically including information display
functions.

2. Description of the Related Art

In conventional computer systems. software operating
systems provide generalized system services to application
programs, including utility and daemon programs. These
system services conventionally include access to whatever
individual hardware peripheral devices, each generally pre-
senting a well defined hardware interface to the computer
system. may be attached directly or indirectly to the com-
puter system. Device drivers. implemented as software
modules or components that can be integrated into an
operating system, are typically used to provide well defined
software application program interfaces (APIs) to the oper-
ating system and application programs for each of the
hardware interfaces. Device drivers often provide a degree
of device independence or virtualizing that may simplify the
interaction of an application program or operating system
with the specifics of a particular class of hardware interface,
such as a video controller. Conventionally, for each imple-
mentation underlying a particular hardware interface. a
specific device driver is used to implement an otherwise
common API that is presented to the application programs
and operating system.

A number of problems are inherent in conventional device
driver designs. First, conventional device drivers are specific
to a particular hardware interface and the function of the
underlying device or controller system. Thus, whenever a
new or different version of a hardware conmtroller is
produced. a new device driver equally specific to the new or
different hardware must also be developed. Where there are
many different versions of a hardware device, a generally
like number of device drivers must be developed.
Alternately. single combination device drivers may be con-
structed to support multiple versions or types of devices.
Such device drivers typically incorporate multiple device
specific drivers that are otherwise substantially independent
of one another into single binary file.

The effective number of device drivers needed to support
a particular piece of hardware is also dependant on the
number and differences in the operating system environ-
ments within which the hardware is to be used. In all but the
most closely related operating systems, a substantial rede-
velopment of the device driver is required to both provide
for the proper ability to incorporate the device driver into a
particular operating system and. perhaps more significantly.
to provide a logically similar though often entirely different
API to the operating system and applications. Usually, the
detailed definition of the API of the device driver governs
the detailed design of the device driver itself. Consequently.
device drivers for the same hardware but for different
operating systems are often almost completely indepen-
dently developed.

15

20

25

30

35

45

50

55

65

2

Another consideration that affects the number of device
drivers that are required to support a particular hardware
controller arises from the nature of other hardware and
systems that are connected to a particular controller. Again,
to provide flexibility in the detailed construction of com-
puter systems, a hardware controller may be capable of
supporting a number of distinctly different modes of opera-
tion. For example. a video controller may be able to support
a significant range of video display resolutions and color
depths, However, the range may be constrained by direct
limitations such as the amount of video RAM actually
implemented on a particular video controller and indirectly
by the maximum vertical and horizontal frequencies of an
attached video display. The requirements of particular appli-
cations may also drive the selection of a particular mode of
operation that must be supported by a device driver.
Conventionally. a number of device drivers are provided
with the hardware controller, each supporting a different set
of one or more modes of operation. One of the provided
device drivers must therefore be selected for operating
system incorporation based directly on the configuration of
the particular computer system. Aside from the difficulties of
picking a device driver that supports the desired set of
operating modes, a substantial difficulty exists in preemp-
tively determining the variety of modes that different indi-
vidual device drivers are to support. Although the individual
drivers may differ only by some modest amount. their
number may be significant in terms of development.

A second problem. in part a consequence of the first. is
that each device driver must be thoroughly tested in the full
variety of environments that the device driver may be used
in to ensure commercially acceptable operation.
Conventionally, device drivers are essentially monolithic
software modules that are incorporated bodily into the
operating system. As such, testing of even minor variants of
a device driver for a particular operating system requires that
the full suite of operational function and application com-
patibility tests be run to verify correct operation of the
device driver. Selective functional testing is generally inap-
propriate due to the real possibility of collateral operational
errors arising from any modification of a monolithically
coded device driver. Given the substantial number of effec-
tively different device drivers conventionally supported for
a reasonably complex hardware controller and the size and
substantial extent of corresponding test suites. the testing of
device drivers represents a substantial expense and a very
significant delay in bringing new or improved versions ofa
product to market.

A third problem with conventional device driver designs
is that they provide for a substantially static type of hardware
controller management. In general. device drivers establish
a single set of operating parameters for the hardware con-
troller being managed by the device driver. The operating
system and the application programs executing on the com-
puter system all must accept the parameters of this static
mode or essentially fail to operate correctly.

In limited instances. a conventional device driver may
make some modes available or visible to application pro-
grams. To make use of these modes. the device driver
therefore relies on application programs to have essentially
compiled-in hardware dependencies. In such cases. the
application programs may invoke a mode change, though
with potential detrimental effects on the other executing
programs that, even if capable of invoking a mode switch.
are effectively unaware of any such switch.

Some typically multi-tasking operating systems can per-
form limited dynamic hardware controller mode switching,



