5,440,730

1

TIME INDEX ACCESS STRUCTURE FOR
TEMPORAL DATABASES HAVING
CONCURRENT MULTIPLE VERSIONS

BACKGROUND OF THE INVENTION

Research in temporal computer databases has been
mostly concerned with defining data models and opera-
tions that incorporate the time dimension. For example,
extensions to the relational data model and its opera-
tions for handling temporal data have been discussed by
Snodgrass and Ahn (R. Snodgrass and I. Ahn, “A Tax-
onomy Of Time In Databases”, ACM SIGMOD Confer-
ence, May 1985) and Gadia and Yeung (S. Gadia and C.
Yeung, “A Generalized Model For A Temporal Rela-
tional Database”, ACM SIGMOD Conference, June
1988). In addition, some work has been presented by
Segev and Shoshani (A. Segev and A. Shoshani, “Logi-
cal Modeling Of Temporal Data”, ACM SIGMOD Con-
Serence, June 1987) and Elmasri and Wuu (R. Elmasri
and G. Wuuy, “A Temporal Model And Langunage For
ER Databases”, IEEE Data Engineering Conference,
February 1990) defining temporal extensions to concep-
tual data models and query languages. Such temporal
data models define .powerful operations for specifying
complex temporal queries. Although there has been
some research in the area of defining storage structures
and access paths for temporal data, for example by Lure
(V. Lum, “Design Dbms Support For The Temporal
Dimension”, ACM SIGMOD Conference, April 1984),
Rotem and Segev (D. Rotem and A. Segev, “Physical
Organization Of Temporal Data”, Proceedings Of IEEE
Data Engineering Conference, 1987), and Kolovson and
Stonebraker (C. Kolovson and M. Stonebraker, “Index-
ing Techniques For Historical Databases”, Proceedings
Of IEEE Data Engineering Conference, February 1989),
these works do not provide indexing schemes for sup-
porting high-level temporal operators such as described
by Gadia et al. and Elmasri et al., cited above.

Storage techniques for temporal data, such as pro-
posed by Lum, index or link the versions of each indi-
vidual object separately. In order to retrieve such ob-
Jject versions that are valid during a certain time period,
it has been necessary to first locate the current version
of each object, and then search through the version
index (or list) of each object separately. A method pro-
posed by Rotem et al., noted above, allows a search
based on time using a multi-dimensional partitioned file,
in which one of the dimensions is the time dimension.
However, in such a scheme temporal data items are
associated with a time point rather than a time interval,
and hence it is not useful when a search involving time
intervals is required.

In order to conduct an efficient computer search

20

30

35

45

50

operation in a temporal database, some effective form of 55

indexing is required. However, since conventional in-
dexing schemes assume that there is a total ordering on
the index search values, the properties of the temporal
dimension make it difficult, for a number of reasons to
use traditional indexing techniques for time indexing.
First, the index search values, i.e the valid_time attri-
bute, are intervals rather than points, because each ver-
sion of an object is typically valid during a time interval
[ti,t2], and the valid .time intervals of various object
versions will overlap in arbitrary ways. Because one
cannot define a total ordering on the interval values, a
conventional indexing scheme cannot be used. Second,
because of the nature of temporal databases, most up-

60

65

2

dates occur in an append mode, since past versions are
kept in the database. Hence, deletions of object versions
do not generally occur, and insertions of new object
versions occur mostly in increasing time value. In addi-
tion, the search condition typically specifies the re-
trieval of versions that are valid during a particular time
interval.

Although the interval-based search problem is similar
in many respects to the k-dimensional spatial search
problem, the various index methods proposed for k-
dimensional spatial search, for example by Ooi et al. (K.
Ooi, B. McDonell, and R. Sack-Davis, “Spatial Kd-
tree: Indexing Mechanism For Spatial Database”, IEEE
COMPSAC 87, 1987), are not suitable for the time di-
mension. While these spatial index methods might be
adapted to a single dimension, for the most part they
support spatial search for two-dimensional objects in
CAD or geographical database applications. The index
algorithms, such as suggested by Ooi et al., use the
concept of a region to index spatial objects, wherein a
search space is divided into regions which may overlap
with each other, and a sub-tree in an index tree contains
pointers to all spatial objects located in a region. Since
spatial objects can overlap each other, handling the
boundary conditions between regions is quite complex
in these algorithms. In temporal computer databases
there can be a much higher degree of overlapping be-
tween the valid__time intervals of object versions. For
instance, a large number of long or short intervals can
exist at a particular time point. Furthermore, the search
space is continuously expanding whereas most spatial
indexing techniques assume a fixed search space. In
addition, temporal objects are appended mostly in in-
creasing time value, making it difficult to maintain tree
balance for traditional indexing trees. Thus, because of
these added requirements of the temporal over the spa-
tial search, the spatial index algorithms are not suitable
for temporal data even where they are directly adapted
from two dimensions to a single dimension.

SUMMARY OF THE INVENTION

The present invention provides a time indexing pro-
cedure which is particularly useful with object version-
ing structured temporal computer databases for the
efficient processing of temporal operations requiring
reference to time intervals. For example, where it is
desired to retrieve object versions that are valid during
a given time period, e.g. the names of all employees
who worked for the company during 1985, this time
index will lead directly to the desired versions, i.e. the
names, without requiring the search of a version index
for each individual object, i.e. employee, separately. In
addition, the time index may be used to efficiently pro-
cess temporal aggregate functions, as well as temporal
WHEN, SELECT, and JOIN operators of Gadia et al.,
and temporal projection suggested in the earlier-noted
work of Elmasri et al.

In a temporal database, the time dimension is usually
represented, as described in Gadia et al., using the con-
cepts of discrete time points and time intervals. A time
interval, denoted by [t1,t3], is defined as a set of time
instants (points) on a scale of consecutive, regularly
occurring time points, where t; is the first time instant
and ty is the last time instant of the interval. The time
dimension is represented as a time interval [O,now],
where O represents the starting time of a database mini-
world application, and now is the current time, which is



