5,440,730

9
TABLE 2
DEPARTMENT Table
Dept Manager Valid_Time
A Smith [0,3]
A Thomas [4.9]
A Chang [10,now]
B Cannata [0,6]
B Martin [7,now]
C Roberto [0,now]

The effect of the operation is to join each DEPART-
MENT object with the appropriate EMPLOYEE ob-
jects during the time periods when the employees
worked for that department. Using the described two-
level time index on the Dept attribute of EMPLOYEE
retrieves the employees working for each department
during specific time periods. The JOIN operation
would effectively be as follows:

for each DEPARTMENT object do
begin
for each version of the DEPARTMENT object to
begin
retrieve the Dept value, and valid__time
[t1,t2] of the version;
use the EMPLOYEE top-level index to locate the
time index for the Dept value;
use the time index to retrieve EMPLOYEE versions
whose time interval overlaps [t1,t2];
join each EMPLOYEE version to the DEPARTMENT
version;
end;
end;

The result of this operation would appear as in the
following Table 3:

TABLE 3
EMPLOYEE/MANAGER Table
Name Dept Valid_Time Manager
empl A [0,3] Smith
empl B [4,6] Cannata
empl B [7,now] Martin
emp2 B [0,5] Cannata
emp3 C [0,7] Roberto
emp3 A [8,9] Chang
emp4 C 2,31 Roberto
emp4 A 8,91 Thomas
emp4 A [10,now] Chang
emp5 B 110,now] Martin
empb C [12,now] Roberto
emp7 C [11,now] Roberto

The simple data processing computer arrangement
depicted in FIG. 5 is typical of database management
systems in general and is suitable for practice of the
present invention. In the usual manner, the system is
under the control of CPU 502 which, operating over
bus 503 and utilizing application programs in memory
(MEN) 504, directs the addition, deletion, search, and
retrieval of data located on disks in database (DB) 508.
Object version updates and searches requested at input-
/output means (1/0) 506, e.g., keyboard and CRT mon-
itor screen, follow the time index structure set out in the
present invention to rapidly and efficiently locate, re-
vise, and retrieve the desired data on appropriate disks
of DB 508.

A simulation of the performance of the time index
was conducted in order to compare it with traditional
temporal access structures. The database had 1000 ob-
jects, and versions where added based on an exponential
distribution for interarrival time. New versions were

10

20

25

30

35

45

50

55

60

65

10

assigned to objects using a uniform distribution. Objects
where also inserted and deleted using an exponential
distribution with a much larger interarrival time than
that for version creation. The comparison of the perfor-
mance of a time index was based on traditional access
structures of clustering (all versions of an object are
clustered on disk blocks) and using an accession list
(each object has an accession list to access its versions
based on time), and the number of block accesses
needed for an interval query was calculated (an interval
query retrieves all versions .valid during a particular
time period). The results of the comparison indicated
that performance for clustering and accession list deteri-
orates as the number of versions per object grows,
whereas using a time index maintains a uniform perfor-
mance.

The temporal selection query employing the two-
level time index of FIG. 4 showed the most dramatic
improvement over traditional access structures, since
only 16 block accesses were needed compared to over
1000 block accesses with traditional structures. It was
also observed that the storage requirements for the
two-level index are considerably less than for a regular
time index because the versions are distributed over
many time trees resulting in smaller buckets for leading
entries in the leaf nodes.

The procedures described and variants suggested
herein for the practice of this time indexing process and
the various other embodiments which will become ap-
parent to the skilled artisan in the light of the foregoing
description are all nonetheless to be included within the
scope of the present invention as defined by the ap-
pended claims.

What is claimed is:

1. A computer-based temporal database management
system including a time index which comprises:

a) an ordered series of indexing time points defining
time intervals during which at least one of a plural-
ity of concurrent object version in said database is
valid; and

b) associated with each indexing point, pointer means
identifying all database object versions that are
valid at the time represented by said each indexing
point.

2. A system according to claim 1 wherein said each
indexing time point defines a change of state of said
database with respect to an object version.

3. A system according to claim 1 wherein said index-
ing time points are situated on a scale of regularly oc-
curring time points and represent those scalar time
points:

a) at which a database object version begins; and

b) next following the scalar time point at which a
database object version terminates.

4. A system according to claim 1 wherein said index-
ing time points populate the leaf nodes of a B+-tree
index structure.

5. A system according to claim 4 wherein each said
indexing time point has an associated pointer to a bucket
of pointers identifying said valid database object ver-
sions.

6. A system according to claim 5 wherein each said
valid database object version is identified by a bucket
pointer.

7. A system according to claim 5 wherein the bucket
pointers of selected indexing points identify only begin-
ning and terminating database object versions.



