5,694,228

7

In decision block 116, controller 34 checks to see if an
empty defect entry is available in the defect list. If there is,
the process flows to block 117, where a new defect entry is
created in the defect list. Then the process flows to decision
block 118. If an empty entry is not available, the process
flows directly from block 116 to block 118.

At decision block 118, defect detection system 14 checks
to see if any further pixels are available for processing. If
not, the process terminates. If more pixels are available, the
process flows to block 120, where the next pixel is retrieved
and the flow continues with decision block 108.

The process flows from decision block 110 to block 122
if the pixel’s location is in the defect list. At biock 122,
controller 34 checks to see if the maximum count of dark
pixels has been reached for that pixel location. If not, the
pixel count for that location is incremented at block 124, a
dark pixel is emitted at block 126, and the process flows to
block 118. Otherwise, if the maximum count has been
reached, the process flows to block 128, where a defect pixel
is emitted, and the process fiows to block 118.

A defect pixel is emitted as the logical result of controller
34 placing that pixel's location at its output as one of defect
locations 42. Defect locations 42 are output either as they
oceur or in a block to the process of apparatus accepting the
output of this process.

If at block 108, the pixel color is found to be a light pixel,
the process flows to block 130, where a light pixel is emitted.
The process then flows to block 132.

At block 132, controller 34 checks if the position of the
fight pixel is in the defect list. If it is not, the process flows
to block 118, but if it is, the process flows to block 134 and
then to block 118. At block 134, the entry for that fight
pixel’s location is deleted from the defect list.

In summary, the flowchart shown in FIG. 4 illustrate the
process by which pixels of an input document are processed
into an output document where the input document contains
light and dark pixels, and the output document contains light
and dark pixels, as well as pixels which are marked as
defective. Although the defective pixels might be separable
into defective dark and defective light pixels, generally
image restoration system 16 is able to operate to correct a
defective pixel without knowing its color. Of course, if only
continuously black pixels are flagged as defects, defect
pixels will always have the same color, namely black. As
FIG. 4 shows, the input document is also used to effect how
later documents are processed.

FIG. 5 is an actual display of an accumulation of docu-
ments scanned using a defective scanning mechanism. Bach
pixel in FIG. 5 has a gray level corresponding to the number
of documents in the accumnlation which have a black pixel
in that location. Most of the documents contained an artifact
of a scratch on the scanner platen, which is clearly distin-
guishable from the text of the documents as a dark, diagonal
line. Of course, the contrast represented in the defect list is
even greater than that shown in FIG. 5, because, while the
black pixels in FIG. § would have corresponding entries in
the defect list with high counts, many of the gray pixels in
FIG. 5 would have been deleted from the defect list, when
the documents failed to have black pixels on consecutive
documents.

FIG. 6 shows how scanned lists such as might be used for
the defect list are typically updated. FIG. 6 shows an even
scanned FIFO (FIFO: First In, First Out Register), an odd
scanned FIFO 202, and a multiplexer 204. The wiring in
FIG. 6 is illustrated for an even scan. As the name suggests,
the role of the FIFO’s switch each scan. During an even

10

15

25

30

35

40

45

55

65

8

scan, list elements are read from even FIFO 200 and written
to odd FIFO 202, and during the following odd scan, list
elements are read from odd FIFO 202 and written to even
FIFO 200. The list elements are read out of one FIFO in
order and written to the other FIFQ, also in order, with some
records deleted from the stream and new records inter-
spersed in the stream by multiplexer 204. The effect of this
is that the list is always in order and packed into one or the
other FIFO. This effect could be had with only a single
FIFO, but only if the space freed by deleted entries was
completely necessary and sufficient for new records. Since
this is generally never possible, two FIFO’s are used.

FIG. 7 shows a more efficient use of memory to accom-
plish the same effect, namely to add, delete, and pack entries
in a list in a single pass through the list. FIG. 7 shows
memory array 250, such as might be maintained within
buffer 40 (see FIG. 2). This memory array 250 is pointed to
by three pointers stored in cursor registers 38. These three
pointers are a read pointer (RP), a start of new list pointer
(NEWSOP), and a right pointer (WP). The elements of array
250 between RP and NEWSOP and the new list is between
NEWSOP and WP. The pointers are such that array 250 is a
circular array, i.e., when a pointer is incremented past the
bottom of array 250 it points to the first entry at the top of
array 250.

During a scan, list entries are read from the array location
pointed to by RP and an entry is written to the location
pointed to by WP, then both RP and WP are incremented.
Adding a new entry is effected by writing an entry to the
entry pointed to by WP, but not incrementing RP. Deleting
an entry is effected by incrementing RP without writing an
entry to the entry pointed to by WP and not incrementing
WP. In this way, the list always remains packed. When RP
becomes equal to NEWSOP, that is a signal (sent to con-
troller 34 in defect detection system 14) that the end of the
list has been reached. At that point, no entries are read from
the old data since there are no remaining entries to be read,
and entries are only added, until the end of a scanned image
is reached. This allows for a packed list to be maintained in
half the space as that shown in FIG. 6.

FIG. 3 and its accompanying description presented the
concept of a gray scale map for defect detection. The method
described in FIG. 4 achieves this using very little memory,
but only detects dark pixels (or more generally, the defects
which are the same color as the less common pixel color).
Using a frame buffer to accumulate the abnormal runs of
both black and white pixels, both colors of defects can be
detected. Of course, storage of a frame buffer requires
considerable memory. For example, even personal comput-
ers today have screen resolutions on the order of 1,000 rows
by 1,000 columns, or a million pixels. Thus, for each page
to be scanned, another million pixels worth of data needs to
be accumulated. This results in an enormous number of
pixels when even a small number of pages is scanned.
Because many bits are typically required for each pixel, the
amount of memory required in such a system can become
enormous quickly.

In a frame buffer embodiment of this invention, the need
for such an enormous frame buffer is avoided by performing
the accumnlation of document frames in stages and com-
pression of the frame buffer. Because of the way the frame
buffers are accumulated, large compression ratios are easily
achieved. This is illustrated by FIGS. 8 and 9.

FIG. 8 shows the process of accumulating document
frames for detecting dark errors, where dark pixels are
expected to be a minority of the pixels in an frame. As each



