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tude 150 with high efficiency and, furthermore, with a high
optical throughput (i.e., low loss). Once phase functions & and
¢ are determined, the respective DOEs will be fabricated to
impose these respective phase maps onto the incident and
output beams, via the respective transmission coefficients, e’
and ¢, as shown in FIG. 1.

Since the respective optical fields, E, and E,, at the respec-
tive planes containing DOE-1 and DOE-2, are related via a
spatial. Fourier transform, it is possible to use various classes
of phase retrieval computational methods to ascertain the
necessary phase profiles, £ and ¢, at the two planes. In this
manner, the respective DOEs can be fabricated, each with the
respective phase-plate profile, £ and ¢, that results in a self-
consistent solution.

For the purposes of simulations and experimental demon-
strations, and, without loss of generality, we consider the
implementation of a mode-conversion module that enables
high-efficiency coupling of a single-mode fiber laser oscilla-
tor output beam to a specific HOM of a fiber power amplifier.
As discussed in more detail below, the ribbon fiber amplifier
is fabricated so that a single spatial mode exists along one of
the cross-sectional dimensions (the x-axis), and, that a
higher-order mode (HOM) exists along the orthogonal cross-
sectional dimension (the y-axis). In one example, the HOM of
the fiber amplifier, to which one desires to launch the seed
laser output, is chosen to be the 7% order eigenmode of a
rectangular-core fiber (i.e., a ribbon fiber).

FIG. 2 shows an example of a step-index ribbon fiber 200
wherein the refractive index of the cladding, n_,,, 210 is
slightly smaller relative to the refractive index of the rectan-
gular core, 1., 220, or, guiding region. In this example, the
cross-sectional dimension of the guiding region 220 is 5 pm in
the x-direction and 50 um in the y-direction. For this choice of
dimensions and refractive indices, the guided spatial mode is
assumed to be a single mode in the x-direction and the
desired. HOM on the ribbon fiber is assumed to be the 7%
order spatial mode in the y-direction.

Phase Retrieval via Gerchberg-Saxton Algorithms

The prior art includes various mathematical algorithms
with the capability to determine the phasefront (or, wave-
front) profile of a complex electromagnetic field at a given
pair of planes in space, given the respective amplitudes of the
field (i.e. the magnitude of the complex field) at the respective
planes. The general technique is commonly referred to in the
art as “phase retrieval.”” One such mathematical construct is
known in the art as the Gerchberg-Saxton (G-S) algorithm,
which is utilized in the design rules for the mode-converter
described herein.

The G-S algorithm involves an iterative process that
enables one to determine the phase profiles of a field, at two
different planes in space, given the amplitudes of the given
field at the two said planes. We shall assume that the functions
involved are well-behaved in a mathematical sense and that
the iterative process converges to a single stable state. Typi-
cally, the two specified planes in space are related by a Fourier
transform (e.g., the near-field and the far-field locations).
Under these conditions, the G-S algorithm proves a means for
phase retrieval of the field, in a self-consistent manner.

In the context of this invention, it is assumed that a pair of
optical field amplitudes is specified, with the goal to deter-
mine the phase map of each field, at their respective Fourier
transform planes, that results in an self-consistent iterative
solution. Suffice it to say, the criteria for convergence of the
algorithm has various interpretations, such as, meeting or
exceeding a predetermined threshold in terms of the correla-
tion, overlap integral or other comparative metric that com-
pares the n” iteration with the (n+1)™ iteration.
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There are myriad variants on prior-art G-S algorithm.
Referring to FIG. 3, a flow chart, 300, depicting one variant of
G-S is shown. In this approach, there are two constraints,
namely, the amplitude of an EM field at each conjugate trans-
form plane. The corresponding phase map of each electro-
magnetic (EM) field at its respective transform plane is
allowed to vary freely, subject to the iterative system satisfy-
ing the pair of transform-related constraints. In what follows,
we assume that the slowly varying envelope of the EM wave
is a complex quantity, comprised of an amplitude and a phase
function, and, further, that the field is monochromatic.

In this example, the starting point of the G-S algorithm
corresponds to specifying the amplitude in the near-field out-
put plane of the single-mode fiber oscillator. The near-field
intensity is given by Igl*; the far-field intensity is given by
IGI?, which, for future reference, also corresponds to the
near-field of the ribbon fiber amplifier; and the Fourier trans-
form of g is given by G, thereby forming a conjugate pair of
transform variables. Hence, the respective field amplitudes,
lgl and |Gl, form the two constraints. Turning now to FIG. 3,
and, given these definitions and constraints, the four-step G-S
iterative approach is implemented as follows:

Step 1: The amplitude of the BM field, g=lgle’, at DOE-1
(recall, FIG. 1), is constrained, to be a specific function, Ig|,
310, whereas, the phase, & of the field 315 is unconstrained.
The phase will tend to a self-consistent function upon con-
vergence of the algorithm. In this case, the initial amplitude
310 is constrained to be the desired near-field single-mode
(LP,, or TEM,,,) output of the seed (master) oscillator.

Step 2: The complex field, g=Igle™ is spatially propagated,
from the plane containing DOE-1, 110 (located at the front
focal plane of the lens 130, as shown in FIG. 1), through the
lens 130 and, finally, evaluated at the rear focal plane of the
same lens, namely, at the plane containing DOE-2,120. In the
Fraunhofer approximation, which is applicable for these
practical systems, it is well-known that the EM complex field
at the rear focal plane of a lens will be proportional to the
spatial Fourier transform ofthe incident field at the front focal
plane, that is, G «F {g}, where F is the spatial Fourier
transform operator. The resultant complex field, G=IG'le*, at
the rear focal plane is comprised at an amplitude, 1G'l, 320 and
a phase function (¢) 325.

Step 3. The resultant Fourier-transformed amplitude (1G'l),
320 is replaced by the fixed amplitude function (IGl) 330. In
the context of the mode converter, |Gl corresponds to the
desired HOM amplitude of the desired ribbon fiber amplifier
eigenmode. Hence, the complex field G=IG"e*® becomes
G=IGle™. Recall, that this field amplitude is the second of the
two constraints inherent in the G-S algorithm. The phase
function (¢) 325, as determined by the Fourier transform
operation of Step 2, is unconstrained, as shown by the phase
function 335.

Step 4. The complex field, G=IGle’®, is then spatially
propagated, from its position at DOE-2, 120, that is, the rear
focal plane of the lens, back through the lens 130 and, finally,
evaluated at the front focal plane of the same lens, namely, at
the plane containing DOE-1, 110. The lens 130 generates the
Fourier transform of the complex field, G=1Gle™®, resulting in
afield g=Ig'le’® at DOE-1. The EM field g=lg'le”® is comprised
of amplitude (Ig'l) 340 and phase function (§) 345, respec-
tively. The final operation of this initial iteration involves
replacing the amplitude (Ig'l) 340 with the amplitude (Igl)310
at the plane containing the element DOE-1. This amplitude
(Igl) corresponds to the first constraint of the G-S algorithm,
as indicated in Step 1 above. As before, the phase function (§)
345 is unconstrained, as shown by 315. This completes the
first iteration of the phase retrieval algorithm.



