US 7,343,628 B2

5

Solution: Authorization Data Model

The subject of the invention is a way of modeling autho-
rization information that dramatically reduces the number of
roles, which need to be maintained in a role-based system.
The core idea is to separate the role, reflecting the position
of'an individual in an organization, from the responsibilities,
reflecting the areas of activity, which need to be accessed by
this individual.

The simplest reflection upon the system is that the infor-
mation about the actions an individual is allowed to take are
separated from the information qualifying the data upon
which these actions are taken.

The general structure of existing authorization manage-
ment systems is composed of individuals, roles, profiles or
groups that qualify these individuals and authorizations/
privileges that belong to the individual. FIG. 1 shows
diagrammatically the basic design of the typical authoriza-
tion management system. In this system the individual who
is being checked for authorization to access a protected
resource is presented as a query to a database maintained by
the application, which, using the individual’s role within a
group and its associated privileges, decides on the basis of
the fixed role and privilege information whether a particular
action is authorized or not. The result of this determination
is the value, for example yes or no, reflecting whether access
is or is not granted, or conditionally granted in some cases.

This leads to the implementation of the data model in a
typical relational database as shown in FIG. 2. The fields
consist of user, role, object, action and value. The user field
contains the user ID of the individual. The role field contains
the specific position information, the object field identifies
the data for which access is being evaluated and the value
field is the authorization status, i.e., access granted or not
granted. The data model of FIG. 2 is not only static or fixed,
but it is replicated in multiple applications and user autho-
rization tools.

Performing the same actions, or having the same access
rights for different objects, results in different authorizations.
In order to differentiate, one will need to create different
roles to reflect those changes. Imagine the simple example
of one company giving the sales people the right to access
the product sales information in their own area. For each and
every area, there will be another sales role created for that
company.

With the model proposed by this invention, the fields are
not static anymore, but include generic variables. The input
for filling the fields is requested at run-time from an external
system containing information about the user, and/or the
fields of the record that are already filled at the time of the
enquiry.

This can be for example realized through a backtracking
link as shown in FIG. 3. The static authorizations composed
of the elements object, action and value are replaced by
authorizations composed mainly of wildcards for the ele-
ments action and value. The object will be given at runtime
by the application determining the access rights.

The system relies on decomposition or factoring of posi-
tions into two basic components: roles and responsibilities.

Objects are “protected resources” and could be data or a
transaction or instantiation of a class, etc. In the context of
authorization, an “object” is a protected resource that the
user wishes to access in some way. The “action” is the
requested manner and extent of access that the user secks
with respect to the object. So if the object is data in a
database, the action could be read, write, edit, move, or
delete. If the object was a particular screen, the action could

40

45

50

6

be display. If the object was a transaction, the action could
be approve, reject, comment, review, complete, and so on.

FIG. 3 shows a system that partakes of both the prior and
the new system. As in the prior system, the user ID would
be paired with permissions through a static mask retrieval
process, as shown in FIGS. 3 and 4. So knowing the ID and
the object and action to be applied to the object, the same
database could be queried for a yes/no value for a given
action. This information is static in the authorization data-
base. If the action/value fields have not been filled in already
by the static system and need updating, the new system,
according to the invention, triggers a look up of the meaning
and implications of the individual’s roles and responsibili-
ties in an external system. This dynamic authorization
decision triggers a call to a different database where the
rights and privileges associated with these roles and respon-
sibilities are stored. So the privileges associated with roles
and responsibilities are disassociated from the individual per
se. Rather they are associated with generic roles and respon-
sibilities that may be changed and supplemented and
updated from time to time without reference to or even
knowledge of a particular individual. The difference
between these two systems is that in the static, fixed data
model, the fields are fixed, and in the dynamic system, they
are completed at run time.

FIGS. 5 and 6 merely show conceptually the portion of
the prior system that is addressed and replaced by the new
approach. The grayed blocks containing static information
on role/group, authorization and value are basically replaced
by the wild card model.

One example of this dynamic authorization decision pro-
cess 1s shown in FIGS. 7 and 8. Here the dynamic decision
process of FIG. 3 is implemented by way of a query or call
to an external database which holds the responsibilities and
associated permissions for various positions and cost centers
in a company, Based on the content of the external database,
at run time, which may be different from time to time, the
action/value fields are filled dynamically resulting in the
authorization.

Another visualization of this concept is provided in FIG.
9., showing interaction between one or more applications
with a central authorization repository. Here an application
with access to a protected resource, e.g., data or a transac-
tion, receives a user request for access to the protected
resource. The application contains an authorization module
or tool that generates, in response to the access request, an
inquiry to a central authorization repository maintained for
example by the system that hosts the user information
database within the enterprise, e.g., human resources,
project planning, or CRM (customer relationship manager)
for customer links. This repository, which may be a data
storage system implemented in the form of a relational
database, contains a plurality of role definitions, in the form
indicated as role No. 1, role No. 2, etc. These roles are not
uniquely associated with a particular individual but are
available for assignment to any individual. So for example,
in FIG. 9, users 1 and 2 are assigned the same role 1, e.g.,
sales manager, but have different respective responsibilities
1 and 2, e.g., Argentina and Brazil. Similarly users 1 and 3
have different roles, e.g., sales manager and technical writer,
but the same areas of responsibility, e.g., Argentina.

The meaning or definition and associated privileges are
defined by a role definition management system, through
which the description and functions of the roles can be
manipulated and redefined from time to time, independent of
the identity of the individual having those roles and inde-
pendent of changes in personnel. In addition, the repository



