US 7,082,526 B2

1

MECHANISM FOR INTUITIVELY
INVOKING ONE OR MORE AUXILIARY
PROGRAMS DURING A COMPUTER
BOOTING PROCESS

FIELD OF THE INVENTION

This invention relates generally to computing technology,
and more particularly to a mechanism for intuitively invok-
ing one or more auxiliary programs during a computer
booting process.

BACKGROUND

In a typical personal computer, there exists a processor, a
basic input-output system (BIOS), a main memory, and a
hard drive that stores an operating system and one or more
application programs. The BIOS usually takes the form of
executable instructions stored on a read-only memory
(ROM). During a regular boot-up process, the processor
accesses and executes the instructions in the BIOS, and
under direction of the BIOS, the processor implements the
booting process. The BIOS causes the processor to perform
some low-level setup functions to prepare the computer for
regular operation. After the setup functions are performed,
the BIOS causes the processor to load and execute the
operating system stored on the hard drive. By doing so, the
BIOS in effect transfers control from itself to the operating
system. After the operating system is loaded and executed by
the processor, the boot-up process is complete and the
computer is ready for operation. As this discussion shows, in
a typical personal computer, the BIOS controls the booting
process.

The ROM on which the BIOS resides (referred to here-
inafter as the BIOS ROM) is typically quite small in size.
Despite this small size, however, it has been observed that
one or more auxiliary programs may be stored on the BIOS
ROM. These auxiliary programs may be executed during the
booting process prior to and even in lieu of the operating
system on the hard drive to provide certain desired func-
tionalities. An example of an auxiliary program is the
self-contained browser disclosed in U.S. patent application
Ser. No. 09/449,065 entitled “Self Contained Browser
Architecture” filed on Nov. 24, 1999, the contents of which
are incorporated herein by this reference. Auxiliary pro-
grams are generally self-contained, meaning that they com-
prise all of the components that they need to operate. As a
result, they do not need the operating system on the hard
drive to function. This can be quite advantageous because
even if the hard drive fails or the operating system becomes
corrupted, the auxiliary programs are not affected. They can
still function. Hence, the auxiliary programs are impervious
to many system failures.

Despite their advantages, auxiliary programs have suf-
fered thus far from one major drawback, which is that they
are difficult and non-intuitive to invoke. Because they are
executed during the booting process, auxiliary programs
have thus far been invoked via the BIOS. Unfortunately,
invoking a program via the BIOS is not an intuitive process.

Two methods are currently implemented to invoke an
auxiliary program via a BIOS. The first method involves
manually adjusting the settings of the BIOS to cause the
BIOS to invoke the auxiliary program. To do so, a user
depresses a special key (e.g. the F1 key) at the beginning of
the booting process to enter BIOS setup mode. Once in this
mode, the user updates the necessary settings to cause the
BIOS to invoke the auxiliary program. After the settings are

20

30

40

45

50

2

updated, the user reboots the computer, and during the
subsequent booting process, the BIOS causes the auxiliary
program to be executed. If the user thereafter wishes to
terminate execution of the auxiliary program, and to execute
the operating system on the hard drive, the user has to reboot
the computer. At the beginning of the subsequent booting
process, the user depresses the special key to once again
enter BIOS setup mode. While in this mode, the user updates
the necessary settings to cause the BIOS to no longer invoke
the auxiliary program. Thereafter, the user reboots the
computer again, and during the subsequent booting process,
the BIOS will bypass execution of the auxiliary program and
proceed to executing the operating system. The problem
with this approach is that it requires significant technical
knowledge on the part of the user. Many computer users lack
such knowledge and sophistication; thus, they cannot take
advantage of the auxiliary program.

A second method involves the use of a “hot key”. During
the booting process, if a user depresses a specific key
recognized by the BIOS as a command to execute the
auxiliary program, then the BIOS will cause the processor to
execute the auxiliary program. Otherwise, the BIOS will
cause the processor to continue with the booting process by
loading and executing the operating system. If the auxiliary
program is executed, and the user subsequently wishes to
execute the operating system, the user has to reboot the
computer. During the subsequent booting process, the user
foregoes depressing the hot key, which causes the BIOS to
load and execute the operating system. While not as bur-
densome as the first approach, the “hot key” approach is still
not very intuitive or convenient. It requires the user to know
which key is the hot key. It also requires the user to
understand the significance of depressing the hot key (i.e.
that it stops the booting process). As noted above, many
computer users lack this level of sophistication. As a result,
they may not know how to, or they may choose not to invoke
the auxiliary program to avoid any additional complication.
In either case, the advantages offered by the auxiliary
program are not exploited.

As shown by the above discussion, the current mecha-
nisms for invoking auxiliary programs during a booting
process leave much to be desired. As a result, an improved
mechanism is needed.

SUMMARY

In accordance with one embodiment of the present inven-
tion, there is provided a mechanism in which, during a
booting process, the BIOS causes one or more auxiliary
programs to be automatically executed. By doing so, the
BIOS transfers control of the booting process to the auxil-
iary programs. Thereafter, it is up to the auxiliary programs
to determine whether to continue execution, or to proceed
with the booting process. Should the auxiliary programs
determine that execution of the auxiliary programs should
continue, the booting process is halted and the operating
system is not loaded or executed.

In one embodiment, to determine whether execution of
the auxiliary programs should continue, the auxiliary pro-
grams do not monitor for a “hot key” that indicates execu-
tion should continue. Instead, they do the converse. The
auxiliary programs monitor for any user input. If any user
input is received, unless the user input indicates specifically
that execution of the auxiliary programs should not con-
tinue, the auxiliary programs will continue execution. Thus,
in this embodiment, the default is to continue execution of
the auxiliary programs. This makes invocation of the aux-



