US 6,868,425 B1

15

In a further alternative embodiment of the invention, a
pinned version of a target object that is related to a source
object is returned. A pinned object is a particular version of
an object that has been specified as the default destination
object in a relationship.

Workspaces in an Object Repository

The previous section described versioning of objects in an
object repository. This section will describe embodiments of
the invention that support workspaces within a repository
that can be used to support working with versioned objects.

A system level overview of an embodiment of the inven-
tion supporting repository workspaces is shown in FIG. 9.
The system includes a repository 250, one or more work-
spaces 908, a version aware application 902, and a non-
version-aware application 904. Repository 250 is described
in detail above with reference to FIG. 2, and by way of
example includes repository objects 906. The objects 906
are versions 1-3 of an object X, and version 1 of an object
Y.

Each of workspaces 908 is a logical repository session.
However, unlike an ordinary repository session, a work-
space is persistent. In other words, workspaces exist across
repository sessions.

Versions of repository objects can be explicitly added to
a workspace, thereby making them visible in the workspace.
In the exemplary system shown, workspace #1 contains
version 1 of object X, workspace #2 also contains versions
1 of object X, and workspace #3 contains version 3 of object
X and version 1 of object Y. Objects can also be explicitly
removed from the workspace. A version can be added to
many workspaces. However, there can be at most one
version of an object in each workspace. Thus, a workspace
is a single-version view of a subset of the repository data-
base.

Version-aware application 902 is an application that has
been designed to take advantage of the versioning capability
provided by repository 250. Version-aware application 902
establishes a session S with repository 250. In one embodi-
ment of the invention where the repository is Microsoft
Repository, application 902 accesses the repository via an
IRepository2 interface. The IRepository2 interface supports
versioning. After a session S has been opened, the applica-
tion’s context includes the entire repository. The application
can then access a workspace W in S. In the example shown,
application 902 has established a connection with workspace
#1, using an IWorkSpace interface. Workspaces 908 support
the session interfaces, so a client can use a workspace as a
logical, or virtual, repository session. Thus, a workspace can
be viewed as a wrapper for the base repository which
provides a context and filter mechanism. Operations on
workspaces are delegated to the base repository object, with
appropriate filtering applied to a subset of the object and
relationship versions present in the workspace 908.

By executing operations in the context of a workspace
instead of S, the client only sees objects that are in (i.e. were
added to) the workspace, relationships on such objects, and
those relationships’ target objects that are also in the work-
space. However, if required, the application can use S
instead of W to access the entire repository.

An object (i.e., version) in a workspace can be updated
only after it is checked out. It can be checked out to at most
one workspace at a time. The checkout/checkin methods
amount to long-term locks that are stored in the repository
database and are used to implement long transactions. A
typical long transaction would add some versions to a

10

15

20

25

35

40

45

50

55

60

65

16

workspace, check out the ones to modify, perform updates
(under short transaction control), check them back in, and
optionally freeze them. This has the benefit of controlling
and managing changes to objects in the repository.

Non-version-aware application 904 is an application that
has been designed such that it is not capable of recognizing
multiple versions of an object. The application 904 may be
one that was designed to access a repository before version-
ing capability was added, or it can be an application that
does not require versioning, but wants to access objects in a
repository containing versioned objects. In an embodiment
of the invention where the repository is Microsoft
Repository, the non-version-aware application is designed to
use the IRepository interface. This interface does not support
versioning in the repository.

In the example shown, non-version-aware application 904
has established a connection to workspace #3. The non-
version-aware application 904 accesses (non-versioned)
objects using a repository session as its context. The appli-
cation 904 can still use session interfaces on those work-
space objects, so no other changes to the application 904 are
required. The resulting application only accesses those
objects that are in the workspace.

Thus, the workspace’s support of session interfaces pro-
vides the backwards compatibility necessary for non-
version-aware applications such as application 904. This
provides a way for non-version-aware applications to gain
the benefits of long term locking provided by workspaces by
opening a workspace. In addition, the workspace interface
can be modified to add major new functionality (workspace
scoping) while avoiding the major change in the program-
ming model that would otherwise be necessary to set and
reset scope.

After establishing a workspace connection, applications
such as applications 902 and 904 can add versions to a
workspace. In an embodiment of the invention where the
repository is the Microsoft Repository, versions are added to
a workspace using the IWorkspace.Contents.Add method.
As noted above, a workspace includes a single version of
each object. If a version of an object already present is
included in the workspace, the newly included version
replaces the previously included version in the workspace.

In addition, object versions can be removed from a
workspace. In an embodiment of the invention where the
repository is Microsoft Repository, objects are removed
using the IWorkspace.Contents.Remove method. It is desir-
able that a version cannot be removed from a workspace
while it is checked out to that workspace.

Each version in a repository maintains a context pointer.
This context pointer indicates whether or not the version
object is associated with a workspace or workspaces, and if
so, which workspaces. The context pointer simplifies the
addition of objects to a workspace, and also allows an
application to copy or compare an object between
workspaces, or between a workspace and the repository. The
first advantage of an implicit context pointer is the simpli-
fication of the API (Application Programming Interface) for
programs that manipulate versions vs. requiring the program
had to explicitly specify workspace context on every object
reference. The ability to add objects to workspaces, compare
objects in workspaces and/or the repository, copy objects
between workspaces and/or the repository etc. is more in the
nature of a requirement for the API. By having separate
ruining object instances, each with its own context, the
system disambiguates cases where the same version of an
object must be manipulated in multiple contexts simulta-



