US 6,868,425 B1

1

VERSIONS AND WORKSPACES IN AN
OBJECT REPOSITORY

RELATED FILES

This application claims the benefit of U.S. Provisional
Application No. 60/122,939, filed Mar. 5, 1999, which is
hereby incorporated herein by reference.

FIELD OF THE INVENTION

This invention relates generally to object repositories, and
more particularly to maintaining versions and workspaces in
an object repository.

COPYRIGHT NOTICE/PERMISSION

A portion of the disclosure of this patent document
contains material which is subject to copyright protection.
The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent
disclosure as it appears in the Patent and Trademark Office
patent file or records, but otherwise reserves all copyright
rights whatsoever. The following notice applies to the soft-
ware and data as described below and in the drawing hereto:
Copyright® 1999, 2000, Microsoft Corporation, All Rights
Reserved.

BACKGROUND

The number of applications that use object-oriented tech-
niques and languages continues to increase at a rapid pace.
This growth in object-oriented applications has resulted in a
corresponding growth in the use of object databases and
repositories. Object databases and repositories provide for
the persistent storage of object data in the same way that a
conventional database provides for the storage of tables
containing data. Object repositories and object-oriented
databases are similar in that they both store data in an object
format, however repositories in addition typically provide
for the storage of metadata, that is, data about the object
data, along with the object data. This metadata typically
comprises information such as object formats and interfaces,
object versions, check-in/check-out dates and personnel,
database schemas, etc.

An object, as is known in the art, is a data structure that
has a persistent state. The persistent state consists of
attributes, which comprise scalar values and object refer-
ences. A scalar value is a value such as a string, integer or
boolean. An object reference specifies one side of a binary
relationship between two objects that refer to each other. In
other words, the reference is to another object, which in turn
refers back to the referring object. Each attribute is identified
by a name, and each attribute has a data type. The data type
for an attribute identifies either the type of scalar value for
the attribute or the type of relationship defined by the
attribute.

In addition to attributes, the state of an object includes
structures. A structure contains a group of attributes that are
organized according to a particular data structure. This data
structure can be a collection (also referred to as a set),
sequence, array, table, or record structure. Each structure
conforms to a named structure type, which defines the
particular data structure (collection, sequence, array, etc.)
and the types of attributes the structure can contain. Like any
attribute, an attribute in a structure can be a scalar value or
object reference. A structure that contains object references
is called an object structure.

Each object conforms to one or more types, where each
type is identified by a name. An object type defines a set of

10

15

20

25

30

35

40

45

50

55

60

65

2

attribute types and/or structure types that an object of the
given type can contain.

An object is typically an instance of a class. A class is a
body of code that implements one or more object types. The
class includes code to produce new objects of each type that
it implements and code to perform various operations on
objects of types that it implements and on attributes and
structures of such objects. The types of operations per-
formed vary depending on the class, and generally include
read and write operations for the attributes and structures of
an object.

The life cycle of a software development project typically
includes multiple design changes, both before and after
release of the software. These design changes include
changes in the definition and relationships between objects.
As a result it is desirable for object oriented environments to
provide the ability to version objects and relationships
between objects in the repository.

Previous systems have provided rudimentary versioning
capability. In these systems, when a new version of an object
is created, a copy of the old version is made, and changes are
applied to the copy, which becomes the new version. While
this mechanism does provide versioning ability, it has sig-
nificant disadvantages. First, copying objects is very ineffi-
cient in terms of both time and computer resources. Each
copy consumes memory, which can be costly given that a
typical project will have many different objects, with each
object having multiple versions.

A second drawback relates to the versioning interface. It
is generally the case that multiple software applications will
require access to an object repository. These applications
may or may not be “version-aware.” In other words, some
applications may recognize that various versions of objects
exist in the repository, and have interfaces designed to work
with the various versions. These applications are known as
version-aware applications. Other applications may be
designed assuming that one, and only one version of an
object exists. These applications are therefore not version-
aware. Object repositories implemented by previous systems
either provide a version-aware interface or an interface that
is not a version-aware interface, but not both.

A third drawback relates to management of relationships
between versions of objects. Previous systems apply an all
or none approach to relationships between versions of
objects. In other words, either all of the relationships from
a previous version are included in the new version, or none
of the relationships are included. This is undesirable,
because it results in the need for a manual fixup of the
relationships whenever a new version is created.

Therefore, there is a need in the art for a system to provide
efficient versioning for objects in a repository. The system
should only copy object properties and relationships when
necessary. Furthermore, the system should provide a mecha-
nism to control whether or not relationships are copied when
a new version is created. In addition, the system should
provide interfaces to applications that are version-aware,
and those that are not version-aware.

SUMMARY

The above-mentioned shortcomings, disadvantages and
problems are addressed by the present invention, which will
be understood by reading and studying the following speci-
fication.

The systems and methods presented maintain versions
and workspaces in an object repository. One aspect of the
system is that objects and properties are only copied when



