US 6,317,524 B1

5

If, step 29, the error term is less than half scale, step 36,
the error term is decreased by 100 and increased by two
scale, and the count is increased by 2 at step 37. If the count
is now greater than 4, step 38, step 39, set the mode to the
count of 4 or 5 (output a line) and subtract 4 from the count,
step 40. If, step 38, the count is less than 4, step 41, the mode
is 3 (no output).

This algorithm produces output lines that are the closest
approximation to the ideal result. To explain this, the fol-
lowing two examples are given to show how the error
dispersion is optimized.

(1) For a magnified image with Scale=120, the objective of
the algorithm is to delete 20 lines for every 120 input lines
to restore the input image to the original size of Scale=100
and also to ensure that the deleted lines are evenly
distributed across the 120 input lines to maintain the
integrity of the input image.

For every Scale/(Scale—100) input lines, delete 1 line. In

the case of Scale=120, for every 6 lines, delete 1 line.
The number of lines not deleted is:

{Scale /(Scale-100)=100/(Scale-100). For Scale=120,
the number of lines not deleted is 5. In other words,
keep the first 5 lines and delete the 6% line.

Define a variable err_y, for each line, increase the vari-
able err_y by

(Scale-100), and the next line is the line to be deleted.
When err__y>60, decrease err__y by 100 and start over
again.

The algorithm starts out with err__y=0 as an initial con-
dition. For each line kept, increase err_y by (Scale-100)
until err_y exceeds % Scale. Delete the next line and
decrease err_y by 100 and start over again. Essentially,
err_y is offset from ({% Scale-100} to % Scale.

For the case of Scale=120, 100/(Scale-100)=5 after 5
lines, and err_y is increased to its full range of 100. For the
next line, delete the 67 line and decrease err_y by 100 and
there is no left over in err_y.

For Scale=115, 100/(Scale-100)=6 with a remainder of
10. After 7 lines, err_y is increased to an absolute range of
105. Delete the 8 line and decrease err_y by 100. The
value of 5 is the error diffused to the next round of
computation.

(2) For a reduced image with Scale=80, the objective of the
algorithm is to duplicate 20 lines for every 80 input lines
to restore the input image to the original size of Scale=100
and also to ensure that the duplicated lines are evenly
distributed across the 80 input lines to maintain the
integrity of the input image.

For every Scale/(100-Scale) input lines, duplicate 1 line.
In the case of Scale=80, for every 4 lines, duplicate 1 line.
The number of lines not duplicated is:

{Scale/(100-Scale)-1}=(2*Scale-100)/(100-Scale). For
Scale=80, the number of lines not duplicated is 3. In
other words, keep the first 3 lines. At the end of the 4
line, duplicate the 47 line.

Define a wvariable err_y, for each line. Decrease the

variable err_y by

(Scale-100). Until err__y<(2*Scale-100), the next line is
the line to be duplicated. Add err_y by (2*Scale-100)
and start over again.

The algorithm starts out with err__y=0 as an initial con-
dition. For each line, decrease err y by (Scale-100) until
err_y is less than —% Scale. Duplicate the next line at the
end of the next line and add err_y by (2*Scale-100) and
start over again. Essentially the range of err_y is offset from
-1 Scale to [-% Scale+(2*Scale-100)].

10

15

20

25

30

35

40

45

50

55

60

6

For the case of Scale=80, (2*Scale-100)/(100-Scale)=3
after 3 lines, and err_y is decreased the full range of 60. For
the next line, duplicate the 4 line and increase err__y by 60
and there is no left over in err_y.

For Scale=85, (2*Scale-100)/(100 -Scale)=4 with a
remainder of 10. After 5 lines, err_y is decreased to a range
of —75. At the end of 6™ line duplicate the 6™ line and
increase err_y by 70.

The value of -5 is the error diffused to the next round of
computation.

The circuit for accomplishing the averaging, subsampling
and resizing is the two-stage pipe-lined circuit of FIG. 2. The
pixels are input at line 50. The first of the four input pixels
of each block bypasses the adder 52 and is applied through
the mux 51 to load the register 53. On the next three clocks,
the pixels are used as one input to the adder 52 and the
register content is used to supply the running sum to the
other input. After the four input pixels of the block are
summed into a ten bit number, the sum is divided by 16 at
the shifter 54, and stored through mux 55 into the line buffer
56. (To get an average of four pixels, one would normally
divide by four, but here it is known that eventually four lines
of four pixels each will finally be summed, so the division
by sixteen is done here in one step). At the end of the first
scan line, the line buffer has a partial sum for each pixel.

For the next scan lines the sum from shifter 54 is applied
to one input of adder 58 and the other adder input receives
the partial sum from the line buffer transferred through mux
59 to the output register 60. If this result is yet another partial
sum, it is loaded back into the line buffer 56 through mux 55.
If this is the final averaged pixel, it is (usually) output
through register 60.

A complication is that in mode O the entire scan line is
ignored, and the line counter is not incremented. In all cases
16 pixels need to be averaged for each output pixel. In this
Mode 0 case, there will be one output for five input scans,
but only four will be used to supply the required total of 16
pixels.

Similarly, in Table 2 there are times when there is an
output every three scan lines. To get 16 pixels in this case,
one set is sent to a doubler 61 and added in adder 62 to get
the correct output

In addition, the modulo 3 counter 64 is used in the
algorithm to generate the mode numbers as shown in the
flow chart of FIG. 2, and a RAM address counter 63 is used
to count down scan line clocks to generate an address pointer
for RAM 56.

This entire circuit uses four clocks to average the four
input pixels, and the remainder of the circuit is pipe-lined so
that it will execute on the first clock of the next block.

While the invention has been described with reference to
a specific embodiment, it will be understood by those skilled
in the art that various changes may be made and equivalents
may be substituted for elements thereof without departing
from the true spirit and scope of the invention. In addition,
many modifications may be made without departing from
the essential teachings of the invention.

What is claimed is:

1. A method of resizing and subsampling a video image of
pixels by either outputting or not outputting each scan line
of pixels, where the subsampling is by a factor of n, where
n is an integer, comprising:

going to a first scan line, setting a scan count to zero, and

setting an error value;

a) going to a next scan line and computing an error value

that is a function of the error that would result if the
next scan line were to be output,



