5,235,523
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Simply by inspecting the dependency relations ob-
tained from the reduced row echelon form of the ma-
trix, it can be determined whether a proper basis has
been selected and, if not, which directions of the two-
fold axes should have been chosen (step 1140). Each of 5
the six combinations of the two-fold axes in the tetrago-
nal system leads to one of three recognizable types of
matrices. Similarly, in the hexagonal system, each of the
fifteen combinations of two-fold axes falls into one of

four recognizable forms of matrices. When the reduced 10

row echelon form of the matrix for the tetragonal or the
hexagonal system is

order of axis 15
22 4 22
100 11
010 —11
0 01 00

20

or

order of axis
2 2 6 2 2 2 2

100 1
01
001 o 00 o0

respectively, or its equivalent, the proper basis has been
chosen.

Perhaps the easiest way to understand the depen-
dency equations in the reduced row echelon form of the
matrix is through use of a diagram For both the tetrago-

nal and hexagonal systems, the vectors projected onto 35

the ab plane are plotted and the respective figures are
compared with those for space groups P4/mmm and
P6/mmm in International Tables For Crystallography
(1983). With a plot of the dependency equations, the
vectors that have been chosen, and if necessary, which
vectors should have been selected, can be readily visu-
alized. ‘

The analysis-of-dependency-equations method for
selecting the directions of symmetry axes to be used as

cell edges is similar in approach to the lattice method of 45

obtaining a standard cell transformation matrix, as both
methods use elementary row operations to reduce a
matrix to a row echelon form. The lattice method may
be viewed as a form of lattice reduction, whereas the
analysis-of-dependency-equations
viewed as a form of symmetry reduction.

The determinant method (FIG. 15) for selecting the
directions of symmetry axes to be used as cell edges
greatly simplifies the analysis based on symmetry be-

cause data is analyzed with respect to any orientation 55

without having to view it, either visually or mathemati-
cally, from a standard basis. In the tetragonal system,
there are six ways to combine two two-fold axes with a
four-fold axis. Similarly, in the hexagonal system, there
are fifteen ways to combine two two-fold axes with a
six-fold axis. For each combination, a 3 X3 matrix of
directions is assembled (step 1150). The determinants of
these matrices are then calculated (step 1160). The di-
rections to be used for the cell edges are found directly

from the values of the determinants of these matrices 6°

(step 1170). In the tetragonal system, one of the six
determinants will be twice the others. If the four possi-
ble two-fold axes are labelled 1, 2, 3, and 4, the combina-

_ 25
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method may be 50
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tion of 1 and 2 with a four-fold axis gives a determinant
twice the rest, and the vectors 3 and 4 should be se-
lected as directions for the conventional cell edges. As
another example, in the hexagonal system, there will be
nine combinations with a determinant of =1, three
combinations with a determinant of =2, and three com-
binations with a determinant of -3. If the six possible
two-fold axes are labelled 1-6, and the combinations of
1-2, 1-3, and 2-3 give determinants of =3, then the
directions for any two of the two-fold axes 4, 5 or 6 may
be used as cell edges.

Often in carrying out practical or theoretical calcula-
tions in which symmetry is involved, it is convenient to
shift basis systems. The matrix approach of the present
invention permits groups of symmetry matrices to be
obtained with respect to any selected basis. The values
of the elements in each symmetry matrix depend on the
kind and orientation of each symmetry operation with
respect to the coordinate system chosen. As a result, the
group of symmetry matrices generated from a skewed
unit cell will be different from the group symmetry
matrices generated from either a standard cell or a sec-
ond skewed cell. Since any two cells defining the lattice
belong to the same Bravais class, there exists a homoge-
neous linear transformation which will transform one
lattice into the other and will transform the holohedry
of one lattice into the holohedry of the other. The ma-
trices may be calculated either directly using the re-
verse transformation method of the present invention;
or by application of the similarity relationship, once the
matrices are known with respect to any initial basis. The
transformation of cell 1 to cell 2 is represented by the
equation

a2y ay
b |=8| b
>3 ¢

and the holohedry of cells 1 and 2 is defined by {H;}
and {H,}, respectively, where H; and H; are groups of
symmetry matrices Hs. The relationship between the
symmetry groups Hj and H; is given by the equation
H;=SH;S—1. This equation defines the effect a change
of basis has on the matrix of a linear operator. By defini-
tion, two matrices representing the same linear operator
with respect to different bases are similar.

While the present invention has been described with
reference to a particular preferred embodiment of the
method and apparatus, the invention is not limited to
the specific example given, and other embodiments will
be apparent to those skilled in the art without departing
from the spirit and scope of the invention.

What is claimed is:

1. Automatic apparatus for identifying an unknown
crystalline material comprising:

an electronic signal analyzer, responsive to electrical

signals generated by detecting radiation received
from a sample of the unknown material which has
been irradiated by radiation, for producing electri-
cal data signal outputs indicative of a primitive
lattice cell Z of the unknown material, said cell Z
having three cell edges ZA, ZB and ZC, respec-
tively, and three cell angles ZAL, ZBE and ZGA,
respectively;

a first computer accessible memory in which is stored



