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define lattice structures that are in a derivative subcell
or supercell relationship if step 130 finds a matrix H
such that either i) the matrix H has integer elements, a
determinant HDET > 1 and will transform cell Z to cell
Y; or ii) its inverse matrix H’' has integer elements, a 5
determinant HDET > 1, and will transform cell Y to
cell Z. A typical range of matrix elements in such a case
includes the integer and non-integer reciprocals thereof
in the range +6, i.e., —6, —5, —4, —3, —2, —1, —178
] _§9 _i! —1/5: 0, 1/5» i, &9 is 1; 2a 3: 4, 5’ 6- 10

c) Unknown cell Z and matching known cell Y define
lattice structures that are in a composite relationship if
step 130 finds a matrix H such that i) the matrix H has
one or more fractional elements and will transform cell
Z to cell Y; and ii) its matrix inverse H' also has one or
more fractional elements and will transform cell Y to
cell Z. A typical range of matrix elements in such a case
includes the integers and non-integer reciprocals
thereof in the range +6, i.e., —6, —5, —4, —3, ~2, —1,
_59 _iy _iy _1/5’ 0: 1/5, }a i, i’ 1; 2: 3, 4, 5 and 6. 20

It will be appreciated that in most phase characteriza-
tion studies, only the first two relationships described
above are of interest. Routinely checking for sub/super-
lattice relationships is particularly useful in that it per-
mits identification despite certain categories of experi- 25
mental errors. The known lattices cells Z determined to
have either the same or a sub- or super-cell relationship
to unknown cell Y are thus advantageously stored as a
first data set 1.

In the next step 150, database 96 is searched to deter- 30
mine all known compounds with the same elemental
composition as the unknown material. The results of the
search are saved in a second data set 2. With the NIST
CRYSTAL DATA database, this is a straightforward
operation, since the database contains an empirical for- 35
mula with the elements in alphabetical order for each
material. Preferably, the element search is set to find all
database compounds that have precisely the same ele-
ments as the unknown and no other elements. In this
type of search, knowledge of the elements not present 40
allows the database to be screened to usually obtain a
highly limited set of potential matches.

Finally, in step 160, the unknown material is identi-
fied by analyzing the results of steps 140 and 150. Ad-
vantageously, this is done simply by logically combin- 45
ing the data sets 1 and 2 using the Boolean AND opera-
tion to form a third data set 3 containing the data entries
which are present in both sets 1 and 2. Hence, the
entries in data set 3 have the same lattice structure and
element types as the unknown material. Since research 0
work has shown that materials can be accurately char-
acterized on the basis of their lattice structures and
chemical composition, it can be reasonably assumed
that if an unknown material has the same lattice struc-
ture and “element types” as a known material in data- 55
base A, the unknown material is the same compound.

The use of the converse transformation matrix gener-
ation method of the present invention in conjunction
with symmetry analysis of lattice structures by an auto-
mated diffractometer will now be described. Referring 60
to FIG. 8, an automated diffractometer according to the
present invention comprises a conventional diffractom-
eter 900 which includes a microprocessor-based con-
troller 902 for controlling the orientation of a sample A
relative to the diffractometer, and detecting and analyz- 65
ing the diffraction signal data produced by the diffrac-
tometer. Referring to FIG. 9, the analysis of lattice
symmetry according to the present invention is accom-

—
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plished by collecting edge and angle parameter data
with diffractometer 900 (step 910); defining any primi-
tive cell and using the converse transformation matrix
generation method of the present invention described
hereinabove to generate a set (or sets) of symmetry
matrices Hs which transforms the primitive cell into
itself (step 920). More specifically, the symmetry matri-
ces Hs in the following equation are determined:

a; = ?”&'jaj(‘:j= 1,23),

where a;and a;jdefine two primitive triplets of noncopla-
nar translations. Only matrices Hs with integer elements
and a determinant HDET of +1 are considered. The
primitive cell advantageously is defined as described
hereinabove in connection with step 10 of FIG. 2. It
will be appreciated that the data collection can be car-
ried out by diffractometer 900 with respect to any basis.
The next step (930) is to determine the metric symme-
try, which is accomplished through analysis of the tol-
erance matrices generated with the matrices Hs pro-
duced in step 920, and to assess the experimental error
of unit cell parameters (which errors are directly related
to the refined cell parameters). As discussed herein-
above, generated with each symmetry matrix Hs is a
tolerance matrix T, which represents the tolerances
(cither absolute or relative percentage tolerances) in the
cell parameters required to transform the primitive cell
into itself by the specified matrix Hs. If the converse
transformation method of the present invention gener-
ates a symmetry matrix Hs having a tolerance matrix:

wla wlb 1lc
tola wiB tly

then the transformation of a first cell by the matrix Hs
will produce a second cell having the parameters

ad =a+4 wla
b =b+4 t0lb
d=c+ e
a' = a + tola
B =B+ 1wl
Y =7+ toly

Thus the matrix method of the present invention ena-
bles a direct comparison of the calculated errors with
the .experimental errors for the refined unit cell. Fur-
ther, by initially assuming very large experimental er-
rors, a menu of all possible symmetries can be obtained
from which the highest possible metric symmetry can
be determined.

By analyzing the symmetry matrices Hs and associ-
ated tolerance matrices T , the metric symmetry groups
are defined. The tolerance matrices T for the group(s)
of symmetry matrices indicate precisely how the ini-
tially selected primitive cell deviates from exact metric
symmetry and pseudosymmetry. In theory, it is the
nature of the matrices themselves that defines the sets to
be analyzed (i.e,, those defining a symmetry group). In
practice, however, the usual result is that the tolerance
matrices alone clearly define the groups. Thus, with this
approach, all possible symmetries and pseudosymme-
tries to within any specified maximum acceptable toler-
ance are immediately apparent. After a group of sym-



