US 8,825,722 B2

11

scribing file may be a word processing file, a diagramming
file, a spreadsheet file, an image file, or any other type of file
that an application is capable of accessing and/or modifying.
Furthermore, in embodiments, the self-describing file may be
written in any number of formats without departing from the
spirit of the embodiments disclosed herein. The self-describ-
ing file type may be written in an XML format, an HTML
format, in a binary format, or any other type of format known
to the art. While the method 200 describes a discrete number
of steps occurring in a particular order, one of skill in the art
will appreciate that the method 200 may be performed in a
different order or may comprise fewer or additional steps.

FIG. 3 is an illustration of a flowchart representing an
embodiment of a method 300 performed by an application
capable of properly recalculating properties values stored in a
self-describing file. For example, embodiments of the method
300 may be performed by a full featured application that is
capable of supporting and/or understanding the objects, prop-
erties, and/or capabilities provided in the self-describing file.
Flow begins at operation 302 where an application opens or
otherwise accesses the self-describing file. In embodiments,
the step of opening the self-describing file may occur after
another application accessed and/or modified the self-de-
scribing file. However, the other application may not have
correctly preserved the content of the file when modifying it.
This may occur due to limitations in the other application’s
capabilities, the other application’s inability to understand
the content of the file, an error encountered by the other
application when writing information to the self-describing
file, or for any other reason.

Flow continues to operation 304 where the application
determines that at least one portion of the content of the
self-describing file has not been properly maintained. For
example, a second property of an object that is dependent
upon a first property may not have been correctly recalculated
upon modification of the first property. In one embodiment,
the application may make such a determination by parsing the
file to check for missing and/or incorrect data. In another
embodiment, the determination may be made by checking for
an indicator within the file that the file contents have not been
correctly updated. For example, the indicator may be a flag or
an error message placed within or associated with the self-
describing file. Although specific examples are provided as to
the process and mechanisms used by the application to make
the determination at operation 304, one of skill in the art will
appreciate that any manner of determining that that at least a
portion of the content of the self-describing file is incorrect
may be employed at operation 304.

Flow continues to operation 306 where the application
recalculates any of the file content that was improperly
updated during a previous modification of the self-describing
file. In one embodiment, the application may recalculate a
value for a property, object, or other portion of the content
based upon a relationship, function, or formula provided in an
extension included in the extension section of the self-de-
scribing file. In another embodiment, the application per-
forming operation 306 may be a full featured application that
is capable of supporting all objects, properties, and/or capa-
bilities of the self-describing file. As such, the full featured
application may be capable of natively recalculating any
errant data without reliance upon an extension element in the
self-describing file. In such an embodiment, the recalculation
of the file content at operation 306 may further include the
addition of information (e.g., object, properties, formulas,
and/or functions provided by the extension elements
described with respect to FIG. 1) to the self-describing file.
For example, the content of the self-describing file may not

10

15

20

25

30

40

45

50

55

60

65

12

have been properly preserved by the last application due to the
fact that an extension defining a relationship of the content
was missing from the file. Upon recalculating the file content
at operation 306, the full featured application may prevent
future miscalculations by updating an extension section
included in or associated with the self-describing file.

Flow continues to operation 308 where the application
stores the recalculated file content (e.g., property values,
objects, etc.) in the self-describing file. In embodiments, the
recalculated values may be stored by writing the values to the
self-describing files at operation 308. In further embodi-
ments, operation 308 may also include writing or otherwise
storing information related to a portion of a file (e.g., exten-
sion objects) to an extension section that is part of or associ-
ated with the self-describing file at operation 308.

Inembodiments, flow continues to operation 310 where the
application displays the file contents from the self-describing
file to the user. For example, an object and its properties may
be displayed to the user. Returning to the example involving
the diagramming application, a shape may be displayed to the
user in a manner such that its properties are correctly calcu-
lated and displayed. In embodiments, because the application
recalculated and stored any improperly maintained file con-
tents at operations 306 and 308, the file is correctly displayed
to the user at operation 310. By doing so, the problems that
occur when a less featured application modify a file shared
between applications are avoided, thereby providing a user of
a less featured application with an enhanced experience by
providing a more complete calculation of data for the file.

While operation 310 is described as displaying the content
of'the self-describing file to the user, one of skill in the art will
appreciate that the application may perform other function-
ality at operation 310 such as, but not limited to, playing a
video, playing audio, or otherwise executing the self-describ-
ing file to perform a function or task. Additionally, while the
method 300 describes a discrete number of steps occurring in
aparticular order, one of skill in the art will appreciate that the
method 300 may be performed in a different order or with
more or fewer steps.

FIG. 4 is an illustration of flowchart representing an
embodiment of a method 400 for preserving unknown file
contents. In embodiments, an application performing the
method 400 may be a less featured application that does not
natively support or understand all of the capabilities or file
contents (e.g., objects, properties, etc.) of the self-describing
file. Flow begins at operation 402 where an application opens
a self-describing file, such as the self-describing file 100 of
FIG. 1. Uponopening the file, flow continues to operation 404
where the application receives information related to a por-
tion of the self-describing file that the application may not
natively support. For example, in one embodiment the appli-
cation may receive information defining an object, property,
characteristic, or other portion of the file that the application
does not support. In another embodiment the application
receives an indication that at least one portion of data in the
file is dependent upon a first portion of the file. For example,
a second property of an object may be dependent upon a first
property of an object. In yet another embodiment, the appli-
cation receives and indication that certain data is to be
updated in the self-describing file upon performing an action.

In embodiments, the application receives an indication by
processing an extension section that may be part of or asso-
ciated with the self-describing file. In embodiments, the
application may examine one or more extension elements (or
one or more children of an extension element) in order to
derive information to calculate values for extended portions
of the file that the application does not natively support. An



