US 8,825,722 B2

7
TABLE 2-continued

Example Embodiment of a CellDef Element

Attribute Description

7. DWORD: 4 byte unsigned long

8. LONG: 4 byte signed long

9. FLOAT: 4 byte float

. DOUBLE: 8 byte double

. PERCENT: 8 byte percent, 100% = 1.0

. GUID: 16 byte GUID

. MULTIDIM: 10 byte multi-dimensional UNUM
. TWIPS: 2 byte signed 1/20ths of a point

. CAL: 1 byte, MSO Calendar enumeration

16. ANY: 9 byte any allowed result

17. UNUM: double with units;

The cell default formula if no formula or value is written.
The position of the column within a row.

In embodiments, a property element may also define a
formula or function that may be used to calculate the value of
the property represented by the element. An application that
does not support the property represented by the element may
nonetheless use the formula or function provided as an
attribute of the property element to calculate a value for the
property. By doing so, the self-describing file 100 provides
the application with the ability to preserve the value of the
property that the application may not support, thereby pre-
serving content, or aspects of the content, that may be
unknown to the application. In other embodiments, the prop-
erty element may define an object, property, or other compo-
nent of the file. The definition may include data that a less
featured application (e.g., an application that does not
natively support the object, property, etc.) can utilized to
calculate values for the non-supported object, property, etc.

In further embodiments, the extension element may con-
tain one or more child elements that define, objects, proper-
ties, functions, and/or formulas that may be used to calculate
values for properties, objects, or other components stored in
the self-describing file 100. A function element may be asso-
ciated with a property, an object, or any other type of data
stored in the self-describing file 100. In such embodiments,
the function element may be used, similar to the function
attribute of the property element, to provide functions and/or
formulas that an application may not natively support. By
doing so, the function element provides for the preservation
of values present in the self-describing file 100 that may be
unknown to an application access the self-describing file. In
embodiments, the function child provides an application with
the ability to preserve unknown file contents, even if the
application does not otherwise support or handle the file
contents.

In embodiments, in order to preserve unknown file con-
tents, an application accessing (e.g., opening) the self-de-
scribing file 100 may parse and load any information pro-
vided by one or more function elements stored in the
extension section that is part of or associated with the self-
describing file 100. In such embodiments, an application may
use the data form the extension section to calculate and store
a value for an object or property, even if that version of the
application does not otherwise natively support the object or
property. The calculated value may be stored in the self-
describing file, thereby allowing the application to preserve
unknown file content. In embodiments, the calculated value
may differ from a value calculated by a full featured applica-
tion; however, the information provided in the extension sec-
tion may allow the less featured application to provide a value
that is compliant with an expected value (e.g., a value calcu-
lated by a full featured application). As such, the information

10

25

40

45

50

8

allows the less featured application to, at the very least, pro-
vide a meaningful value where without the information the
less featured application may have returned an error or pro-
vided meaningless information.

As described herein, a self-describing file 100 may be used
to prevent issues where object and/or property data not
natively supported by an application is improperly main-
tained when the application modifies the content of the self-
describing file 100. Returning to the transparency example in
which the value of a transparency property is dependent upon
the value of a shading property, an application that modifies
the shading property of an object may nevertheless calculate
a value for the transparency property using the functions,
object, properties and/or other information described by the
extension element and/or its child elements provided in the
extension section 102 of the self-describing file 100, even if
the application does not natively support calculation of the
transparency property. Moreover, native objects and proper-
ties that have values dependent on an extended object, prop-
erty, relationship, etc. (e.g., the transparency property from
the examples provided) may also be calculated by the less
featured application even though the extended property,
object, relationship etc. may not be known to the lesser fea-
tured application.

FIG. 2 is an illustration of a flow chart representing an
embodiment of a method 200 for creating a self-describing
file. Flow begins at operation 202 where an application cre-
ates a self-describing file, such as the self-describing file 100
from FIG. 1. In embodiments, an application may create the
self-describing file in response to a command issued by a user
or by another application. In embodiments, the self-describ-
ing file may be a diagram file created by a diagramming
application, a document file created by a word processing
application, a spreadsheet file created by a spreadsheet appli-
cation, or any other type of file. In further embodiments,
information provided by an extension element may also be
used in conjunction with a data stream. As such, a less fea-
tured application may use self-describing information (pro-
vided in an extension element or otherwise) to properly
manipulate data in a data stream.

During the creation operation 202, objects, properties, and/
or components may be included in the self-describing file. In
embodiments, the objects, properties, and or components
may be written to the self-describing file. At operation 204 a
first portion of data is written to the self-describing file. In
embodiments, the first portion of data may be a property
representing a characteristic of an object. For example, if the
self-describing file is created by a diagramming application, it
may contain an object representing a shape. The first portion
of data may be a characteristic of the shape, such as the
shape’s color, size, outlining, shading, etc. As another
example, if the self-describing file is created by a word pro-
cessing application, an object representing a string of text
may be written to the self-describing file. In such an embodi-
ment, the first portion of data may be a characteristic of the
text such as font face, font size, color, indentation, etc. As
such, in embodiments, a first portion of data may represent a
characteristic of any object in the self-describing file, any
component of the self-describing file (such as a section, a
template, etc.) or a characteristic of the self-describing file
itself. In further embodiments, the first portion of data may be
an object, a property, a formula, a relationship, a component
or any other type of data that may be written to the self-
describing file.

Flow continues to operation 206 where at least a second
portion of data is written to the self-describing file. Similar to
the first portion of data, the second portion of data may



