5,655,121

1

METHOD AND APPARATUS FOR
ENCODING DATA TO BE SELF-
DESCRIBING BY STORING TAG RECORDS
DESCRIBING SAID DATA TERMINATED BY
A SELF-REFERENTIAL RECORD

This is a continuation of application Ser. No. 08/233,297
filed Apr. 26, 1994, now abandoned.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to data processing systems.
More specifically, the present invention relates to a method
and apparatus for encoding data in such a way that the data
describes itself, so that the data may be manipulated in a
predetermined manner associated with the indicated data
type.

2. Background Information

As software development becomes increasing prevalent
and, used in circumstances which formerly applied discrete
electronics to perform desired functions, needs for testing
and verification of the functionality of software become
more and more important. One prior art method of testing
software includes the use of so-called probes and traces.
Probes are a means of distinguishing points in code, and
perhaps, generating an event record, although other things
can be done. A trace is a time-linear (or, at least, causally
ordered) collection of records of some set of the distin-
guished events in the execution of a program or set of
programs. A probe, like a test point in circuitry, is a place at
which a developer may evaluate the performance of the
running program. Some probes may be selectively enabled
or disabled depending upon operating circumstances, so that
object code can generate probe information without requir-
ing that a programmer modify the source code for the
program. Thus, probes within an executable routine may be
selectively enabled or disabled in groups at run-time without
modification of the underlying source code. Thus, a pro-
grammer may determine faults in a program withount know-
ing anything about the internals of the operational code
(although this is certainly helpful).

We may categorize probes into two classes: manual
probes; and automatic probes. Manual probes are inserted by
a programmer by hand into the source code of a program.
They are used by the programmer for detailed debugging
and performance analysis. A sub-class of manual probes are
known as semantic probes with effects that are documented
as part of the program or library interface. Typically, these
are used to provide external debugging or performance
analysis information. Automatic probes are those which are
inserted into existing run-time programs by tools without
direct programmer manipulation of the source code. Auto-
matic probes may be inserted by a pre-processor or by
operating on processed binaries, and may provide such
information as procedure exit and entry points. Automatic
probes may be selectively enabled and disabled at run-time
to specifically analyze certain performance problems.

One of the problems with prior art probes and tracing is
that data is expected by the test engineer only in a certain
format. Typically, the data is presented in a raw form,
wherein the test engineer must determine what the data
returned from the probes represents. Thus, the test engineer
evaluating an executable program which generates informa-
tion from probes must have an intimate understanding of the
probe information provided at program run-time.
Unfortunately, in many instances, such information is not

10

15

25

30

35

45

50

55

65

2

available, or may be obscured by the original programmer of
the application program under test. Thus, it is desirable that
a program generating probes provide information about the
probes in a standardized manner so that diagnosis of the
programs under test may be most easily accomplished
without a detailed understanding of the internal functioning
of the program under test. Prior art techniques of inter-
process communication in enviromments such as testing,
typically require information extraneous to the data to
discern the type of data returned from the program.

SUMMARY OF THE PRESENT INVENTION

A computer-implemented method and apparatus in a
computer system of processing data generated by a first
application program in a second applicatior program during
runtime. During runtime, the first application program gen-
erates a record including a plurality of fields, wherein at least
one of the plurality of fields contains data generated by the
first application program. Other of the plurality of fields
containing descriptive information regarding the data. In
implemented embodiments, this may include, fields for
representing checkpoints in the program, such as a relative
address at which the checkpoint occurred, and/or a time at
which the checkpoint was reached. The record also includes
a reference (e.g. a pointer, relative or absolute) to a tag
record. The tag record describes the plurality of fields
contained in the record (e.g. the names and types of the
fields). The tag record further recursively references a plu-
rality of tag records each referencing an associated tag
record identifying fields in a referred-to tag record. This
continues, recursively, until ultimately, a root record is
referenced including a self-referential tag identifying the
fields in the root record. The second application program
then may receive the record (e.g. during computer system
runtime, for example, during execution of a test suite), and
references the tag record and each of the plurality of tag
records, recursively, until reaching the root record in order
to identify the data by referencing the pluratity of fields in
each of the tag records. In this manner, the data contained in
the record is thus self-describing. The second application
program then manipulates the data according to the identi-
fication of the data specified by the record, the tag record and
each of the plurality of tag records, such as by filtering data
contained in the record which is not required by the test
suite, or by reformatting the data into a form more appro-
priate for examination by a user or a post-processing pro-
gram.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example
and not limitation in the figures of the accompanying in
which like references indicate like elements and in which:

FIG. 1 illustrates a system upon which one embodiment
of the present invention may be implemented.

FIG. 2 shows a relationship between an application pro-
gram under test and a test suite program and the communi-
cation between those two executable programs.

FIG. 3 illustrates the processing of various trace infor-
mation and intermediate information as may be performed in
a system implementing the embodiments of the present
invention.

FIGS. 4-7 show various data structures which may be
created and used in implemented embodiments of the
present invention.

DETAILED DESCRIPTION

A portion of the disclosure of this patent document
contains material which is subject to copyright protection



