6,058,416

17

This application demonstrates the natural way in which
event sharing (FIG. 7) and state sharing (FIG. 10) can be
combined. Note that the bidding and notification teams 230
could have been implemented with shared object 650, by
having a shared bid object and notification object between
the auctioneer and every bidder.

Drawing Board

This application allows the users to share a drawing board
on which they can draw and edit lines and curves. The lines
and curves are drawn by pressing down on the left-mouse
button, dragging it to the end point (or along a curve), and
releasing the button. A shared object 650 is maintained for
each line or curve, where the line is represented as two
points and the curve as a list of points. The editing opera-
tions permitted on objects are translation, and changing the
end-points (only for lines).

The application uses the conflict detection support (FIGS.
13, 14, 15, 16) provided by this invention to detect concur-
rent updates on the same object 650. It then allows the user
to clone and export the complete set of objects to others
(FIGS. 10-11). After deciding on the correct state,
re-initialization of the complete set is done.

In addition, it uses Late Event Modification (FIG. 12) to
give the user feedback while drawing or translating a line or
curve. Consider the case of Alice drawing a line. The initial
mouse press fixes the initial point of the line and adds the
line object to the set. Though the final point is not fixed till
Alice releases the button, she wants to see the current
position of the line while dragging the mouse. However,
others do not need to see each of these mouse drag events.
LEM allows us to solve this problem by posting an upda-
teEvent 810 with the current final point and then continu-
ously modifying the final point value in the event object as
Alice drags the mouse. The done method 1231 is called on
the event when the mouse button is released.

This application can be enhanced in two ways. First,
instead of cloning the complete set, it could clone the object
650 in error and the objects in its physical neighborhood.
After users fix the errors, re-initialization is done for the
single object in error.

Thus, while we have described our preferred embodi-
ments of our invention, with alternatives, it will be under-
stood that those skilled in the art, both now and in the future,
may implement various equivalents, improvements and
enhancements which fall within the scope of the claims
which follow. These claims should be construed to maintain
the proper protection for the invention first disclosed.

BIBLIOGRAPHY

The following background references are hereby incor-
porated herein by reference in their entirety:

[1] D. Comer and D. Stevens. Internetworking with TCP/IP.
Prentice Hall.

[2]73. F. Patterson, R. D. Hill, S. L. Rohall, and W. S. Meeks,
“Rendezvous: An architecture for Synchronous Multi-
user Applications.” CSCW 90: Proceedings of the Con-
ference on Computer Supported Cooperative Work,
ACM, 1990.

[3] Sun Microsystems, Java Development Kit (JDK). http:/
www.javasoft.com.

[4] K. Birman, A Schiper and P. Stephenson. “Lightweight
causal and atomic group multicast”. ACM TOCS,
9(3):272-314, August 1991.

Having thus described our invention, what we claim as
new and desire to secure by Letters Patent is:

1. A system for updating replicated state in a distributed
collaborative application, comprising:

18

a plurality of clients, each client comprising:
the distributed collaborative application comprising
one or more distributable components, wherein each
component may be executed independently and
5 communicate with other components; each compo-
nent including one or more sets of related shared
objects which are replicated at collaborating appli-
cations; and
a collaborative client middleware, communicatively
coupled to the application and to the network,
adapted to communicate to and receive updates over
the network to the state of a shared object;

conflict detection means for detecting conflicting updates
to the shared object; and

conflict resolution means for resolving said conflicts,
detachably coupled to the conflict detection means.

2. The system of claim 1, further comprising update event
means for asynchronously and atomically updating one or
more of said related shared objects.

3. The system of claim 1, further comprising add object
means for adding an object to a local set replica of said
shared objects and communicating an added object state to
collaborating applications.

4. The system of claim 1, further comprising means for
instantiating a collaborative team.

5. The system of claim 4 wherein the system includes a
client-server system, further comprising:

an optimistic event execution model; and

team descriptor logic means for ordering events through
the server and dispatching locally generated events
immediately.

6. The system of claim 1, wherein the system is a

client-server system, further comprising:

a server coupled to the network, the server comprising
means for maintaining a collaborative activity for each
active collaboration.

7. The system of claim 6, the server further comprising:

team server means for dynamically creating, updating and
destroying a collaborative team, wherein each team has
a unique name space in a collaborative activity.

8. The system of claim 6, the server further comprising
team policy means for defining and implementing a team
behavior.

9. The system of claim 1, further comprising context-
sensitive state marhalling means for propagating state to one
or more new or updated shared objects in the shared object
sets.

10. The system of claim 1, further comprising

cloning and reinitialization means for correcting diverg-
ing state among the shared object sets.

11. The system of claim 10, further comprising:

context-sensitive state marhalling means for marshaling
and unmarshaling clones of one or more shared objects
in the shared object sets.

12. The system of claim 10, wherein said cloning and

reinitializing means further comprises:

clone subsetting means for making a clone of a subset of
objects in the set and preserving pointers from inside
the original subsets to objects outside the cloned subset;

means for mapping references between objects inside the
original subset into the cloned subset;

means for exporting the cloned subset to other clients; and

means for reinitializing the subset of objects based one of
the cloned subsets.

13. The system of claim 1, wherein the events are the units

of communication in the collaborative client, and each event
has a name, a type, data, and a source.

10

20

25

30

35

40

45

50

55

60

65



