6,058,416

1

FLEXIBLE STATE SHARING AND
CONSISTENCY MECHANISM FOR
INTERACTIVE APPLICATIONS

CROSS-REFERENCE TO RELATED PATENT
APPLICATION

The present invention is related to co-pending U.S. patent
application Ser. No. 09/083,702, filed on May 22, 1998,
entitled “Flexible Event Sharing, Batching, and State Con-
sistency Mechanisms for Interactive Applications,” by
Bhola et al. This co-pending application, which is com-
monly assigned with the present invention to the Interna-
tional Business Machines Corporation, Armonk, N.Y., is
hereby incorporated by reference in its entirety into the
present application.

FIELD OF THE INVENTION

This invention relates to distributed applications and more
specifically to a system and method for providing event and
state sharing support for building object-oriented interactive
collaborative applications in wide-area distributed environ-
ments such as an intranet or the Internet.

BACKGROUND

With the ability to extend web browser functionality using
JAVA (a trademark of Sun Microsystems), plugins,
ACTIVEX (a trademark of MicroSoft), etc., simple inter-
active groupware applications are being made available to a
wide population of users. Examples include Internet chat
and simple white boards. However, for building complex
object-oriented collaborative applications, developers need
a simple and powerful programming model, which at the
same time should allow good response time and efficient
implementation in a wide-area distributed environment.
Appropriate support for sharing state is critical for support-
ing collaborative applications. In wide-area environments,
replication of state is used to improve response time. Also,
there are instances where a more primitive mechanism like
event notification (also called event sharing) is a much better
match for application requirements than state sharing. These
high-level requirements for interactive groupware, coupled
with replicated state, lead to three critical objectives that are
addressed by the present invention.

OBJECTS OF THE INVENTION

1. Programming model: One objective, from a system
design viewpoint is to decouple the programming model
from any concurrency control implementation (including
those of the present invention). For example, when an
application issues an operation on a shared object, the
system should have flexibility in scheduling this operation at
the various replicas. This separation between the issuing of
an operation and its execution leads to an asynchronous
programming model that allows the system to employ a
variety of concurrency control implementations such as
pessimistic locking, ordering actions via a server, optimistic
notification with automatic rollback and others. From the
application developers viewpoint, the following require-
ments are considered:

Pipelining: It is desirable that an application be able to
continue processing user input and initiate actions
while its previous actions are being executed. This is
useful, for example, when the user input is fine-grained,
and a small response lag is acceptable, e.g., typing a
few characters ahead of the echo. Depending on the

10

20

25

35

40

45

50

55

60

65

2

lookahead permissible to a user, and the actual response
time, this can allow for faster user interaction. The
asynchronous model motivated by system needs also
meets this requirement.

Atomicity: As single-user applications have no source of
contention, there is no need to distinguish between a
group of operations which are part of a single action
and a series of actions. However, with multiple users,
it is necessary to specify some group of operations as
indivisible so that they are scheduled for execution at
the same time, and to ensure that other operations are
not interleaved with them. Hence, the programming
model should support atomic actions that access mul-
tiple shared objects.

Support for legacy applications: It should be easy to
convert existing single-user application data-structures
into shared data using class extensions.

The present invention has features that provide an asyn-
chronous model for specifying atomic operations on the
shared state using update events. This model only requires
shared objects and events to implement a simple Marshall-
able interface. This interface allows for powerful state
sharing semantics which are not possible to implement with
simpler interfaces like JAVA™ Object Serialization.

2. Consistency of shared state: Potential inconsistencies in
the replicas can arise due to different ordering of the events
at different processes. Most systems take two eXtreme
approaches when dealing with consistency of replicated
state, (1) a fully optimistic approach with rollbacks and
reexecution, and (2) a pessimistic approach utilizing lock-
ing. The first approach frees the application programmer
from the burden of consistency maintenance, but the effect
of jitters in the user interface due to automatic rollback could
be a problem. The second approach does not allow enough
freedom of interaction. It has been observed that strict
locking is usually not necessary for collaborative applica-
tions because of implicit social protocols employed by
collaborating users.

The present invention uses an intermediate approach of
optimistic execution along with a combination of three
mechanisms which flexibly expose the application writer to
more of the distributed nature of the application:

a. Global Locks: can be used by the application to enforce

correct ordering;

b. Detection of Conflicts: the system detects conflicts due
to incorrectly ordered updates and informs the appli-
cation; and

¢. Cloning and Re-initialization: the application can use
this to construct an application specific conflict reso-
lution policy.

3. Application specific event batching: Fine-grained user
interaction with a GUI leads to a lot of updates on the shared
state. For efficiency reasons, all these updates should not be
propagated to the other users in the collaboration. The
present invention uses a novel event batching technique
(Late Event Modification) to resolve this tension between
interactivity and performance.

SUMMARY

The foregoing and other objectives are realized by the
present invention, which provides a system and method for
event and state sharing support for building object-oriented
interactive applications in wide-area distributed environ-
ments (such as an intranet or the Internet).

One embodiment of the present invention is implemented
as middleware that provides support for different classes of



