4,558,413

61
such a file is found, it must be the representation of this
abject.

The distributed environment introduces two types of
delays in access to objects represented by files: (1) If the
file is on a remote machine, it has to be found. (2) Once
found, it has to be retrieved.

Since retrieval time is determined by the speed of file
transfer across the network and the load on the file
server, the modeller tries to avoid retrieving files when
the information it wants about a file can be computed
once and stored in a database. For example, the type of
an object, which is the information needed to compute
its compilation dependencies, is small compared to the
object itself. The object type table stores the types of all
objects of current interest; a source object in the table
does not have to be examined, or even retrieved, unless
it actually needs to be recompiled.

In cases where the file must be retrieved, determining
which machine or computer and directory has a copy of
the version desired can be very time consuming. Even
when a file location hint is present and correct, it may
still be necessary to determine several versions of the
file to find the one with the right creation date. The
modeller minimizes these problems by keeping another
cache, which maps an object name into the full path
name in the distributed file system of a file which repre-
sents the object. This cache is the Version Map, dis-
cussed previously. Note that both source objects, whose
unique identifiers are creation dates, and binary objects,
whose unique identifiers are version stamps, appear in
the version map. The full pathname includes the version
number of the file, which is the number after the *“!”.
This version number makes the file name unique in the
file system so that a single reference is sufficient to
obtain the file.

Thus, the modeller’s strategy for minimizing the cost
of referencing objects has three paths:

(1) Consult the object type table or the projection
table, in the hope that the information needed about the
object is recorded there. If it is, the object need not be
referenced at all.

(2) Next, consult the version map. If the object is
there, a single reference to the file system is usually
sufficient to obtain it.

(3) If there is no entry for the object in the version
map, or if there is an entry but the file it mentions does
not exist, or does not actually represent the object, then
use the file location hint to identify a directory, and
enumerate all the versions of the file to find one which
does represent the object. If this search is successful,
make a new entry in the version map so that the search
need not be repeated.

Like the other caches, a version map is maintained on
each computer or machine and in each .modelBcd ob-
ject. A .modelBed version map has an entry for each
object mentioned in the model. A machine version map
has an entry for each object which has been referenced
recently on that machine. In addition, commonly refer-
enced objects of the software system are added to the
machine version map as part of each release.

Since the version maps are hints, a version map entry
for an object does not guarantee that the file is actually
present on the file server. Therefore, each successful
probe to the version map delays the discovery of a
missing file. For example, the fact that source file does
not exist may not be discovered until the compilation
phase, when the modeller tries to compile it. This means
that the modeller must be robust in the face of such

10

20

25

30

35

45

65

62

errors. The release process, however, guarantees that
the files are present as long as the release remains active.

While the system modeller has been described in
conjunction with specific embodiments, it is evident
that alternatives, modifications and variations will be
apparent to those skilled in this art in light of the forego-
ing description. Accordingly, it is intended to embrace
all such alternatives, modifications and variations as fall
within the spirit and scope of the appended claims.

What is claimed is:

1. A software version management system for auto-
matically collecting and recompiling updated versions
of component software objects comprising a software
program for operation on a plurality of personal com-
puters coupled together in a distributed software envi-
ronment via a local area network and wherein said
objects include the source and binary files for various of
said software program and are stored in various differ-
ent local and remote storage means through said envi-
ronment, said component software objects being peri-
odically updated via environment editing means by
various users at said personal computers and stored in
designated storage means, said system including:

models comprising system objects,

each of said models representative of the source ver-
sions of a particular component software object,

each of said models containing object pointers includ-
ing a unique name of the object, a unique identifier
descriptive of the cronological updating of its cur-
rent version, information as to an object’s depen-
dencies on other objects and a pathname represen-
tative of the residence storage means of the object,

means in said editing means to notify said manage-
ment system when any one of said objects is being
edited by a user,

means in said management system in response to noti-
fication of object editing to track said edited ob-
jects and alter their respective models to the cur-
rent version thereof,

said management system upon command adapted to
retieve and recompile said source files correspond-
ing to said altered models and load the binary files
of said altered component software objects and
their dependent objects into said computers.

2. The software version management system of claim

1 wherein said system includes accelerator means to
cache said object pointers in said models that never
change to thereby avoid further retrieving of said ob-
jects to parse and to discern said object pointers.

3. The software version management system of claim
2 wherein said accelerator means for said models in-
cludes

an object type table for caching the unique name of
the object and its object type to enhance the analy-
sis of a model by said management system,

a projection table for caching the unique name of the
source object, names of object parameters, com-
piler switches and compiler version to enhance the
translation of objects into derived objects, and

a version map for caching said pathname.

4. A method for automatically collecting updated
versions of component software modules together
which comprise a software program operative on a
plurality of computers, said computers coupled to-
gether in a distributed software environment via a local
area network and wherein said modules are stored in
various different local and remote storage means



